The partial reduction of esters to aldehydes is a fundamentally important transformation for the synthesis of numerous fine chemicals and consumer goods. However, despite the many efforts, limitations have persisted, such as competing overreduction, low reproducibility, use of exigent reaction conditions and hazardous chemicals. Here, we report a novel catalyst family with a unique steric design which promotes the catalytic partial reduction of esters with unprecedented, near-perfect selectivity and efficiency.
View Article and Find Full Text PDFDNA-encoded library (DEL) technology has become widely used in drug discovery research. The construction of DELs requires robust organic transformations that proceed in aqueous media under mild conditions. Unfortunately, the application of water as reaction medium for organic synthesis is not evident due to the generally limited solubility of organic reagents.
View Article and Find Full Text PDFA visible light induced palladium-catalyzed fluoroalkylation method was developed. The Heck-type alkyl coupling reaction enables the introduction of trifluoroethyl, difluoroethyl and other fluoroalkyl fragment into styrenes under mild reaction conditions without the use of additional photosensitizers and ensures access to fluoroalkylated olefins on a broad scale.
View Article and Find Full Text PDFStructurally different bis(imino)copper(i) complexes were prepared in a highly modular manner and utilized as copper-based photocatalysts in the ATRA reactions of styrenes and alkyl halides. The new photocatalysts showed good catalytic activity and ensured efficient chemical transformations.
View Article and Find Full Text PDFThe one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic microporosity (PIM) precursor is impregnated with PtCl₆ to give (after vacuum carbonization at 700 °C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1⁻4 nm diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area of this hybrid material is 518 m² g (with a cumulative pore volume of 1.
View Article and Find Full Text PDFBIG1 and BIG2 are brefeldin A-inhibited guanine nucleotide-exchange proteins that activate ADP-ribosylation factors (ARFs), critical components of vesicular trafficking pathways. These proteins can exist in macromolecular complexes and move between Golgi membranes and cytosol. In the BIG1 molecule, a centrally located Sec7 domain is responsible for ARF activation, but functions of other regions are largely unknown.
View Article and Find Full Text PDFLike other guanine nucleotide-exchange proteins (GEPs) that activate ADP-ribosylation factor (ARF) GTPases, brefeldin A-inhibited GEP2, BIG2, contains an approximately 200-aa Sec7 domain that is responsible for this catalytic activity and its inhibition by brefeldin A. The Sec7 domain is located near the center of the molecule and serves to accelerate replacement of GDP bound to ARF with GTP. To explore possible functions of the N-terminal region of BIG2 (1-832), we used three coding-region constructs as bait to screen a human heart cDNA library in a yeast two-hybrid system, retrieving two unique clones that encode a type I protein kinase A (PKA) regulatory subunit, RI alpha.
View Article and Find Full Text PDFTwo brefeldin A (BFA)-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors, 200-kDa BIG1 and 190-kDa BIG2, were copurified from bovine brain cytosol associated with >670-kDa macromolecular complexes. When observed by immunofluorescence in HeLa S3 and HepG2 cells, endogenous BIG1 and coexpressed BIG2 were distributed in a punctate pattern throughout the cytosol, and also concentrated in the perinuclear region, where endogenous BIG1 and BIG2 each partially colocalized with Golgi-specific 58K protein and gamma-adaptin. On Western blot analysis, both BIG1 and BIG2 were clearly more abundant in the cytosol than in the microsomal fractions.
View Article and Find Full Text PDFActivation of ADP-ribosylation factors (ARFs), approximately 20-kDa GTPases that are inactive in the GDP-bound form, depends on guanine nucleotide-exchange proteins (GEPs) to accelerate GTP binding. A novel ARF GEP, designated cytohesin-4, was cloned from a human brain cDNA library. Deduced amino acid sequence of the 47-kDa protein contains the same structural components present in cytohesin -1, -2, and -3, including an approximately 200-amino acid Sec7 domain with an approximately 100-residue pleckstrin homology domain near the C terminus.
View Article and Find Full Text PDFA brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (GEP) for ADP-ribosylation factors (ARF) was purified earlier from bovine brain cytosol. Cloning and expression of the cDNA confirmed that the recombinant protein (p200) is a BFA-sensitive ARF GEP. p200 contains a domain that is 50% identical in amino acid sequence to a region in yeast Sec7, termed the Sec7 domain.
View Article and Find Full Text PDFADP-ribosylation factor 1 (ARF1) is a 20-kDa guanine nucleotide-binding protein involved in vesicular trafficking. Conversion of inactive ARF-GDP to active ARF-GTP is catalyzed by guanine nucleotide exchange proteins such as cytohesin-1. Cytohesin-1 and its Sec7 domain (C-1Sec7) exhibit guanine nucleotide exchange protein activity with ARF1 but not ARF-like protein 1 (ARL1), which is 57% identical in amino acid sequence.
View Article and Find Full Text PDFArfaptin 1, a approximately 39-kDa protein based on the deduced amino acid sequence, had been initially identified in a yeast two-hybrid screen using dominant active ARF3 (Q71L) as bait with an HL-60 cDNA library. It was suggested that arfaptin 1 may be involved in Golgi functions, since the FLAG-tagged protein was associated with Golgi membranes when expressed in COS-7 cells and could be bound to Golgi in vitro in an ADP-ribosylation factor (ARF)- and GTPgammaS-dependent, brefeldin A-inhibited fashion. Arfaptin 2, found in the same two-hybrid screen as arfaptin 1, is 60% identical in amino acid sequence and may or may not have an analogous function.
View Article and Find Full Text PDFCytohesin-1, a protein abundant in cells of the immune system, has been proposed to be a human homolog of the Saccharomyces cerevisiae Sec7 gene product, which is crucial in protein transport. More recently, the same protein has been reported to be a regulatory factor for the alphaLbeta2 integrin in lymphocytes. Overexpression of human or yeast ADP-ribosylation factor (ARF) genes rescues yeast with Sec7 defects, restoring secretory pathway function.
View Article and Find Full Text PDFADP-ribosylation factors (ARFs) are approximately20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. Both GTP binding and hydrolysis are necessary for its physiological functions, although purified mammalian ARF lacks detectable GTPase activity. An ARF GTPase-activating protein (GAP) was purified >15,000-fold from rat spleen cytosol using (NH4)2SO4 precipitation and chromatography on Ultrogel AcA 34, DEAE-Sephacel, heparin-Sepharose, hydroxylapatite, and Ultrogel AcA 44.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 1996
ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 1994
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A.
View Article and Find Full Text PDFADP-ribosylation factors (ARFs) are a family of highly conserved, 20-kDa guanine nucleotide-binding proteins that participate in protein trafficking and enhance cholera toxin-catalyzed ADP-ribosylation. ARF 2 from bovine retinal cDNA was expressed in Sf9 insect cells using recombinant baculovirus and compared to the major insect cell ARF (Sf9 ARF) and to recombinant ARF 2 expressed in Escherichia coli (E. coli rARF 2).
View Article and Find Full Text PDFADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins initially identified by their ability to enhance in vitro cholera toxin-catalyzed ADP-ribosylation and subsequently shown to participate in vesicular transport in the Golgi and other cellular compartments. By cDNA and genomic cloning, at least six mammalian ARFs were identified. Brefeldin A (BFA) disrupts Golgi membranes and inhibits binding of soluble high molecular weight proteins to Golgi fractions.
View Article and Find Full Text PDFADP-ribosylation factors (ARFs), a family of approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin ADP-ribosyltransferase in vitro, have been implicated in intracellular protein trafficking and are thought to cycle between cytosolic and membrane compartments. Although isolated predominantly as soluble proteins, ARFs associate with membranes and phospholipids in a GTP-dependent manner. In contrast to other small GTP-binding proteins, ARFs are NH2 terminally myristoylated.
View Article and Find Full Text PDFThe effects of cholera toxin, a secretory product of Vibrio cholerae, result from ADP-ribosylation of the stimulatory guanine nucleotide-binding (Gs) protein of the adenylyl cyclase system. Cholera toxin A subunit (CTA) also uses agmatine, a simple guanidino compound, several proteins unrelated to Gs, and CTA itself as alternative ADP-ribose acceptors. The effects of toxin occur in the jejunum presumably at body core temperature.
View Article and Find Full Text PDFSix mammalian ADP-ribosylation factors (ARFs) identified by cDNA cloning were expressed as recombinant proteins (rARFs) that stimulated cholera toxin ADP-ribosyltransferase activity. Microsequencing of soluble ARFs I and II (sARFs I and II), purified from bovine brain, established that they are ARFs 1 and 3, respectively. Rabbit antibodies (IgG) against sARF II reacted similarly with ARFs 1, 2, and 3 (class I) on Western blots.
View Article and Find Full Text PDFCholera toxin exerts its effects on cells in large part through the ADP-ribosylation of guanine nucleotide-binding proteins. Toxin-catalyzed ADP-ribosylation is enhanced by approximately 20-kDa guanine nucleotide-binding proteins termed ADP-ribosylation factors (ARFs), which are allosteric activators of the toxin catalytic unit. Rabbit antiserum against a purified bovine brain ARF (sARF II) reacted on immunoblots with two approximately 20-kDa ARF-like proteins (sARF I and II) in tissue extracts from bovine, rat, frog, and chicken.
View Article and Find Full Text PDFEscherichia coli heat-labile enterotoxins (LT) are responsible in part for "traveler's diarrhea" and related diarrheal illnesses. The family of LTs comprises two serogroups termed LT-I and LT-II; each serogroup includes two or more antigenic variants. The effects of LTs result from ADP ribosylation of Gs alpha, a stimulatory component of adenylyl cyclase; the mechanism of action is identical to that of cholera toxin (CT).
View Article and Find Full Text PDFCholera toxin activates adenylyl cyclase by catalyzing the ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide binding protein of the cyclase system. This toxin-catalyzed reaction, as well as the ADP-ribosylation of guanidino compounds and auto-ADP-ribosylation of the toxin A1 protein (CTA1), is stimulated, in the presence of GTP (or GTP analogue), by 19-21-kDa proteins, termed ADP-ribosylation factors or ARFs. These proteins directly activate CTA1 in a reaction enhanced by sodium dodecyl sulfate (SDS) or dimyristoylphosphatidylcholine (DMPC)/cholate.
View Article and Find Full Text PDF