Publications by authors named "Adame A"

Introduction: Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson's disease. The plant alkaloid "nicotine" was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear.

Methods: In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice.

View Article and Find Full Text PDF

Accumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain.

View Article and Find Full Text PDF

This study investigated the biogeography, the presence and diversity of potentially harmful taxa harbored, and potential interactions between and within bacterial and eukaryotic domains of life on plastic debris in the Mediterranean. Using a combination of high-throughput DNA sequencing (HTS), Causal Network Analysis, and Scanning Electron Microscopy (SEM), we show regional differences and gradients in the Mediterranean microbial communities associated with marine litter, positive causal effects between microbes including between and within domains of life, and how these might impact the marine ecosystems surrounding them. Adjacent seas within the Mediterranean region showed a gradient in the microbial communities on plastic with non-overlapping endpoints (Adriatic and Ligurian Seas).

View Article and Find Full Text PDF

Synucleinopathies are age-related neurological disorders characterized by the progressive deposition of α-synuclein (α-syn) aggregates and include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Although cell-to-cell α-syn transmission is thought to play a key role in the spread of α-syn pathology, the detailed mechanism is still unknown. Neuroinflammation is another key pathological feature of synucleinopathies.

View Article and Find Full Text PDF

Enzyme replacement with ectonucleotide pyrophosphatase phospodiesterase-1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three-prong strategy. First, we added new N-glycans to ENPP1; second, we optimized pH-dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two-step process to improve sialylation by first producing ENPP1-Fc in cells stably transfected with human α-2,6-sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4-O-Bu ManNAc.

View Article and Find Full Text PDF

Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood.

View Article and Find Full Text PDF

Progressive accumulation of the pre-synaptic protein α-synuclein (α-syn) has been strongly associated with the pathogenesis of neurodegenerative disorders of the aging population such as Alzheimer's disease (AD), Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. While the precise mechanisms are not fully understood, alterations in kinase pathways including that of mitogen activated protein kinase (MAPK) p38 have been proposed to play a role. In AD, p38α activation has been linked to neuro-inflammation while alterations in p38γ have been associated with tau phosphorylation.

View Article and Find Full Text PDF

Plymouth Housing is a Housing First organisation in Seattle, WA (USA) that provides far more than housing for its residents-staff are equally concerned with building community and creating a sense of belonging. The objective of this study was to interview residents about their experiences of community and collect their suggestions for improving community, building efforts within this organisation. This exploratory qualitative study was conducted across eight buildings and included 38 participants from November 2018 to February 2019.

View Article and Find Full Text PDF
Article Synopsis
  • Immunotherapies targeting amyloid β (Aβ) and α-synuclein (α-syn) are being explored for treating dementia with Lewy bodies, but their effectiveness as single or combined treatments is unclear.
  • Researchers tested different AFFITOPE® peptides on mice to assess their impact on Aβ and α-syn levels, neuron health, and behavioral outcomes.
  • Results showed that while AD02 (Aβ-targeting) was better at reducing Aβ and improving certain behaviors, the combination of AD02 and PD-AFF1 (α-syn-targeting) had some added benefits, indicating that specific immunotherapy could be promising for dementia treatment.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurological disorder characterized by the progressive accumulation of neuronal α-synuclein (αSyn) inclusions called Lewy bodies. It is believed that Lewy bodies spread throughout the nervous system due to the cell-to-cell propagation of αSyn via cycles of secretion and uptake. Here, we investigated the internalization and intracellular accumulation of exogenous αSyn, two key steps of Lewy body pathogenesis, amplification and spreading.

View Article and Find Full Text PDF

The maintenance of genomic integrity is essential for normal cellular functions. However, it is difficult to maintain over a lifetime in postmitotic cells such as neurons, in which DNA damage increases with age and is exacerbated by multiple neurological disorders, including Alzheimer's disease (AD). Here we used immunohistochemical staining to detect DNA double strand breaks (DSBs), the most severe form of DNA damage, in postmortem brain tissues from patients with mild cognitive impairment (MCI) or AD and from cognitively unimpaired controls.

View Article and Find Full Text PDF

Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders.

View Article and Find Full Text PDF

Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation.

View Article and Find Full Text PDF

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders of the aging population characterized by the accumulation of α-synuclein (α-syn). The mechanisms triggering α-syn toxicity are not completely understood, however, c-terminus truncation of α-syn by proteases such as calpain may have a role. Therefore, inhibition of calpain may be of value.

View Article and Find Full Text PDF

Progressive accumulation of aggregation-prone proteins, amyloid-β (Aβ) and hyperphosphorylated tau (p-tau), are the defining hallmarks of Alzheimer's disease (AD). The mechanisms by which Aβ and p-tau are transmitted throughout the diseased brain are not yet completely understood. Interest in exosome research has grown dramatically over the past few years, specifically due to their potential role as biomarkers for staging of neurodegenerative diseases, including AD.

View Article and Find Full Text PDF

Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner.

View Article and Find Full Text PDF