Integrin-dependent crosstalk between cell-matrix adhesions and cell-cell junctions is critical for controlling endothelial permeability and proliferation in cancer and inflammatory diseases but remains poorly understood. Here, we investigated how acetylation of the distal NPKY-motif of Integrin-β1 influences endothelial cell physiology and barrier function. Expression of an acetylation-mimetic β1-K794Q-GFP mutant led to the accumulation of immature cell-matrix adhesions accompanied by a transcriptomic reprograming of endothelial cells, involving genes associated with cell adhesion, proliferation, polarity, and barrier function.
View Article and Find Full Text PDFThe promising anti-angiogenetic properties of previously synthesized pyrazolyl ureas provided the rationale for the synthesis of novel 5-aminopyrazoles 2-5, differently decorated on the pyrazole nucleus. All the derivatives were tested by MTT assays and proved to be non-cytotoxic against eight different tumor cell lines and normal fibroblasts. An EdU proliferation assay was carried out on human foreskin fibroblasts and VEGF stimulated human umbilical vein endothelial cells which confirmed the absence of cytotoxicity of the compounds on human cells up to 20 μM concentration.
View Article and Find Full Text PDF(1) Background: different previously synthesized pyrazoles and imidazo-pyrazoles showed interesting anti-angiogenic action, being able to interfere with ERK1/2, AKT and p38MAPK phosphorylation in different manners and with different potency; (2) Methods: here, a new small compound library, endowed with the same differently decorated chemical scaffolds, has been synthetized to obtain new agents able to inhibit different pathways involved in inflammation, cancer and human platelet aggregation. (3) Results: most of the new synthesized derivatives resulted able to block ROS production, platelet aggregation and p38MAPK phosphorylation both in platelets and Human Umbilical Vein Endothelial cells (HUVEC). This paves the way for the development of new agents with anti-angiogenic activity.
View Article and Find Full Text PDFBased on biological results of previous synthesized pyrazolyl ureas able to interfere with angiogenesis process, we planned and synthesized the new benzyl-urea derivatives 2-4; some of them showed an interesting anti-proliferative profile and particularly 4e potently inhibited HUVEC proliferation. To shed light on the mechanism of action of 4e, its interactome has been deeply inspected to identify the most prominent protein partners, mainly taking into account kinome and phosphatome, through drug affinity responsive target stability experiments, followed by targeted limited proteolysis analysis. From these studies, PP1γ emerged as the most reliable 4e potential target in HUVEC.
View Article and Find Full Text PDFIntroduction: Total hip arthroplasty (THA) has been regularly performed in the public hospital in Bobo-Dioulasso since 2010. The objective of thisstudywas to assess the medium-termresults of total hip arthroplastyat the Bobo-Dioulasso UniversityHospital. Dioulasso.
View Article and Find Full Text PDF: Mucopolysaccharidosis type I-Hurler (MPS1-H) is a severe genetic lysosomal storage disorder due to loss-of-function mutations in the gene. The subsequent complete deficiency of alpha l-iduronidase enzyme is directly responsible of a progressive accumulation of glycosaminoglycans (GAG) in lysosomes which affects the functions of many tissues. Consequently, MPS1 is characterized by systemic symptoms (multiorgan dysfunction) including respiratory and cardiac dysfunctions, skeletal abnormalities and early fatal neurodegeneration.
View Article and Find Full Text PDFMany persons with diabetes mellitus have limb ischemia, which is a major clinical problem. A subset of human monocytes that expresses TIE-2 may enhance neovascularization. We performed 179 phlebotomies on 142 patients (or donors), including 61 patients/donors without diabetes or ischemia (controls), 39 diabetic nonischemic patients (controls), and 42 diabetic patients with severe limb ischemia requiring amputation.
View Article and Find Full Text PDFThe recruitment of monocytes from the blood to targeted peripheral tissues is critical to the inflammatory process during tissue injury, tumor development and autoimmune diseases. This is facilitated through a process of capture from free flow onto the luminal surface of activated endothelial cells, followed by their adhesion and transendothelial migration (transmigration) into the underlying affected tissue. However, the mechanisms that support the preferential and context-dependent recruitment of monocyte subpopulations are still not fully understood.
View Article and Find Full Text PDFBackground: Vascular endothelial (VE)-cadherin is an endothelial cell-specific protein responsible for endothelium integrity. Its adhesive properties are regulated by post-translational processing, such as tyrosine phosphorylation at site Y in its cytoplasmic domain, and cleavage of its extracellular domain (sVE). In hormone-refractory metastatic breast cancer, we recently demonstrated that sVE levels correlate to poor survival.
View Article and Find Full Text PDFRecruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14CD16 patrolling and CD14CD16 intermediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration.
View Article and Find Full Text PDFThe limitation of targeting VEGF/VEGFR2 signalling to stop angiogenesis in cancer therapy has been blamed on re-activation of alternative receptor tyrosine kinases by compensatory angiogenic factors. Targeting MAPK and PI3K signaling pathways in endothelial cells may be an alternative or complementary approach. Herein we aimed to evaluate the antitumor and antiangiogenic potential of a novel pyrazolyl-urea kinase inhibitor, GeGe3, and to identify its kinase targets.
View Article and Find Full Text PDFTaking into account the structure activity relationship information given by our previous studies, we designed and synthesized a small library of pyrazolylureas and imidazopyrazolecarboxamides fluorinated on urea moiety and differently decorated on pyrazole nucleus. All compounds were preliminary screened by Western blotting technique to evaluate their activity on MAPK and PI3K pathways by monitoring ERK1/2, p38MAPK and Akt phosphorylation, and also screened with a wound healing assay to assess their capacity in inhibiting endothelial cell migration, using human umbilical vein endothelial cells stimulated with VEGF. Pyrazoles and imidazopyrazoles did not show the same activity profile.
View Article and Find Full Text PDF5'-Nucleotidase/CD73 is a key enzyme in the regulation of purinergic signaling, hydrolyzing extracellular AMP to produce adenosine, which is critical in the blood vascular system and in immunosuppression. CD73 is expressed by both blood endothelial cells and lymphatic endothelial cells. Although the role of CD73 on blood endothelial cells in controlling vascular permeability and leukocyte trafficking has been studied, the role of lymphatic CD73 has thus far remained unknown.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2014
Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2014
We previously reported that vascular endothelial growth factor induced vascular endothelial (VE)-cadherin tyrosine phosphorylation at Y685 in a Src-dependent manner in vitro. Here, we studied the occurrence of Y685 phosphorylation in vivo in the female reproductive tract because it is a unique model of physiological vascular remodeling dependent on vascular endothelial growth factor. We first developed and characterized an anti-phospho-specific antibody against the site Y685 of VE-cadherin to monitor VE-cadherin phosphorylation along the four phases of mouse estrous cycle, termed proestrus, estrus, metestrus, and diestrus.
View Article and Find Full Text PDFVessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that principally attacks synovial joints. However, accelerated atherosclerosis and increased cardiovascular morbidity and mortality are major clinical consequences of endothelial dysfunction in RA patients. Tumor necrosis factor α (TNFα) is the major mediator of inflammation in RA, related to vascular injury by targeting VE-cadherin, an endothelium-specific adhesion molecule of vital importance for endothelium integrity and angiogenesis.
View Article and Find Full Text PDF