Histological hematoxylin and eosin-stained (H&E) tissue sections are used as the gold standard for pathologic detection of cancer, tumor margin detection, and disease diagnosis. Producing H&E sections, however, is invasive and time-consuming. While deep learning has shown promise in virtual staining of unstained tissue slides, true virtual biopsy requires staining of images taken from intact tissue.
View Article and Find Full Text PDFOptical-resolution photoacoustic microscopy (OR-PAM) can visualize wavelength-dependent optical absorption at the cellular level. However, OR-PAM suffers from a limited depth of field (DOF) due to the tight focus of the optical excitation beam, making it challenging to acquire high-resolution images of samples with uneven surfaces or high-quality volumetric images without z-scanning. To overcome this limitation, we propose needle-shaped beam photoacoustic microscopy (NB-PAM), which can extend the DOF to up to ~28-fold Rayleigh lengths via customized diffractive optical elements (DOEs).
View Article and Find Full Text PDFNeedle-shaped beams (NBs) featuring a long depth-of-focus (DOF) can drastically improve the resolution of microscopy systems. However, thus far, the implementation of a specific NB has been onerous due to the lack of a common, flexible generation method. Here we develop a spatially multiplexed phase pattern that creates many axially closely spaced foci as a universal platform for customizing various NBs, allowing flexible manipulations of beam length and diameter, uniform axial intensity, and sub-diffraction-limit beams.
View Article and Find Full Text PDFCellular-resolution optical coherence tomography (OCT) is a powerful tool offering noninvasive histology-like imaging. However, like other optical microscopy tools, a high numerical aperture (N.A.
View Article and Find Full Text PDFOptical coherence tomography (OCT) allows label-free, micron-scale 3D imaging of biological tissues' fine structures with significant depth and large field-of-view. Here we introduce a novel OCT-based neuroimaging setting, accompanied by a feature segmentation algorithm, which enables rapid, accurate, and high-resolution in vivo imaging of 700 μm depth across the mouse cortex. Using a commercial OCT device, we demonstrate 3D reconstruction of microarchitectural elements through a cortical column.
View Article and Find Full Text PDFPolarization-sensitive optical coherence tomography (PS-OCT) reveals the subsurface microstructure of biological tissue and provides information regarding the polarization state of light backscattered from tissue. Complementing OCT's structural signal with molecular imaging requires strategies to simultaneously detect multiple exogenous contrast agents with high specificity in tissue. Specific detection of molecular probes enables the parallel visualization of physiological, cellular, and molecular processes.
View Article and Find Full Text PDFThe use of gold nanoparticles as diagnostic tools is burgeoning, especially in the cancer community with a focus on theranostic applications to both cancer diagnosis and treatment. Gold nanoparticles have also demonstrated great potential for use in diagnostic and therapeutic approaches in ophthalmology. Although many ophthalmic imaging modalities are available, there is still a considerable unmet need, in particular for ophthalmic molecular imaging for the early detection of eye disease before morphological changes are more grossly visible.
View Article and Find Full Text PDFAngular compounding is a technique for reducing speckle noise in optical coherence tomography that is claimed to significantly improve the signal-to-noise ratio (SNR) of images without impairing their spatial resolution. Here, we examine how focal point movements caused by optical aberrations in an angular compounding system may produce unintended spatial averaging and concomitant loss of spatial resolution. Experimentally, we accounted for such aberrations by aligning our system and measuring distortions in images and found that when the distortions were corrected, the speckle reduction by angular compounding was limited.
View Article and Find Full Text PDFIntravital microscopy (IVM) and optical coherency tomography (OCT) are two powerful optical imaging tools that allow visualization of dynamic biological activities in living subjects with subcellular resolutions. Recent advances in labeling and label-free techniques empower IVM and OCT for a wide range of preclinical and clinical cancer imaging, providing profound insights into the complex physiological, cellular, and molecular behaviors of tumors. Preclinical IVM and OCT have elucidated many otherwise inscrutable aspects of cancer biology, while clinical applications of IVM and OCT are revolutionizing cancer diagnosis and therapies.
View Article and Find Full Text PDFOptical coherence tomography (OCT) suffers from speckle noise due to the high spatial coherence of the utilized light source, leading to significant reductions in image quality and diagnostic capabilities. In the past, angular compounding techniques have been applied to suppress speckle noise. However, existing image registration methods usually guarantee pure angular compounding only within a relatively small field of view in the focal region, but produce spatial averaging in the other regions, resulting in resolution loss and image blur.
View Article and Find Full Text PDFThe past several decades have brought significant advances in the application of clinical and preclinical nanoparticulate drugs in the field of cancer, but nanodrug development in cardiovascular disease has lagged in comparison. Improved understanding of the spatiotemporal kinetics of nanoparticle delivery to atherosclerotic plaques is required to optimize preclinical nanodrug delivery and to drive their clinical translation. Mechanistic studies using super-resolution and correlative light microscopy/electron microscopy permit a broad, ultra-high-resolution picture of how endothelial barrier integrity impacts the enhanced permeation and retention (EPR) effect for nanoparticles as a function of both atherosclerosis progression and metabolic therapy.
View Article and Find Full Text PDFConventional ultrasound imaging is based on the scattering of sound from inhomogeneities in the density and the speed of sound and is often used in medicine to resolve pathologic compared to normal tissue. Here we demonstrate a difference-frequency ultrasound (dfUS) imaging method that is based on the interaction of two sound pulses that propagate non-collinearly and intersect in space and time. The dfUS signal arises primarily from the second-order non-linear coefficient, a contrast mechanism that differs from linear and harmonic US imaging.
View Article and Find Full Text PDFDeveloping contrast-enhanced optical coherence tomography (OCT) techniques is important for specific imaging of tissue lesions, molecular imaging, cell-tracking, and highly sensitive microangiography and lymphangiography. Multiplexed OCT imaging in the second near-infrared (NIR-II) window is highly desirable since it allows simultaneous imaging and tracking of multiple biological events in high resolution with deeper tissue penetration . Here we demonstrate that gold nanobipyramids can function as OCT multiplexing contrast agents, allowing high-resolution imaging of two separate lymphatic flows occurring simultaneously from different drainage basins into the same lymph node in a live mouse.
View Article and Find Full Text PDFCurrent in vivo neuroimaging techniques provide limited field of view or spatial resolution and often require exogenous contrast. These limitations prohibit detailed structural imaging across wide fields of view and hinder intraoperative tumor margin detection. Here we present a novel neuroimaging technique, speckle-modulating optical coherence tomography (SM-OCT), which allows us to image the brains of live mice and ex vivo human samples with unprecedented resolution and wide field of view using only endogenous contrast.
View Article and Find Full Text PDFBy their nature, tumors pose a set of profound challenges to the immune system with respect to cellular recognition and response coordination. Recent research indicates that leukocyte subpopulations, especially tumor-associated macrophages (TAMs), can exert substantial influence on the efficacy of various cancer immunotherapy treatment strategies. To better study and understand the roles of TAMs in determining immunotherapeutic outcomes, significant technical challenges associated with dynamically monitoring single cells of interest in relevant live animal models of solid tumors must be overcome.
View Article and Find Full Text PDFOptical coherence tomography (OCT) can be utilized with significant speckle reduction techniques and highly scattering contrast agents for non-invasive, contrast-enhanced imaging of living tissues at the cellular scale. The advantages of reduced speckle noise and improved targeted contrast can be harnessed to track objects as small as 2 μm in vivo, which enables applications for cell tracking and quantification in living subjects. Here we demonstrate the use of large gold nanorods as contrast agents for detecting individual micron-sized polystyrene beads and single myeloma cells in blood circulation using speckle-modulating OCT.
View Article and Find Full Text PDFOptical coherence tomography angiography (OCTA) is an important tool for investigating vascular networks and microcirculation in living tissue. Traditional OCTA detects blood vessels via intravascular dynamic scattering signals derived from the movements of red blood cells (RBCs). However, the low hematocrit and long latency between RBCs in capillaries make these OCTA signals discontinuous, leading to incomplete mapping of the vascular networks.
View Article and Find Full Text PDFWe measured the reduction of speckle by frequency compounding using Gaussian pulses, which have the least time-bandwidth product. The experimental results obtained from a tissue mimicking phantom agree quantitatively with numerical simulations of randomly distributed point scatterers. For a fixed axial resolution, the amount of speckle reduction is found to approach a maximum as the number of bands increases while the total spectral range that they cover is kept constant.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample.
View Article and Find Full Text PDFDespite extensive research and development, new nano-based diagnostic contrast agents have faced major barriers in gaining regulatory approval due to their potential systemic toxicity and prolonged retention in vital organs. Here we use five independent biodistribution techniques to demonstrate that oral ingestion of one such agent, gold-silica Raman nanoparticles, results in complete clearance with no systemic toxicity in living mice. The oral delivery mimics topical administration to the oral cavity and gastrointestinal (GI) tract as an alternative to intravenous injection.
View Article and Find Full Text PDFOptical Coherence Tomography (OCT) imaging of living subjects offers increased depth of penetration while maintaining high spatial resolution when compared to other optical microscopy techniques. However, since most protein biomarkers do not exhibit inherent contrast detectable by OCT, exogenous contrast agents must be employed for imaging specific cellular biomarkers of interest. While a number of OCT contrast agents have been previously studied, demonstrations of molecular targeting with such agents in live animals have been historically challenging and notably limited in success.
View Article and Find Full Text PDFNanoparticles are used extensively as biomedical imaging probes and potential therapeutic agents. As new particles are developed and tested , it is critical to characterize their biodistribution profiles. We demonstrate a new method that uses adaptive algorithms for the analysis of hyperspectral dark-field images to study the interactions between tissues and administered nanoparticles.
View Article and Find Full Text PDF