Publications by authors named "Adam Z Kaczmarek"

In this work, we have studied the thermodynamic properties of the Van der Waals black hole in the framework of the relativistic Kaniadakis entropy. We have shown that the black hole properties, such as the mass and temperature, differ from those obtained by using the the Boltzmann-Gibbs approach. Moreover, the deformation κ-parameter changes the behavior of the Gibbs free energy via introduced thermodynamic instabilities, whereas the emission rate is influenced by κ only at low frequencies.

View Article and Find Full Text PDF

The concept of entropy is not uniquely relevant to the statistical mechanics but, among others, it can play pivotal role in the analysis of a time series, particularly the stock market data. In this area, sudden events are especially interesting as they describe abrupt data changes with potentially long-lasting effects. Here, we investigate the impact of such events on the entropy of financial time series.

View Article and Find Full Text PDF

In the framework of the mimetic approach, we study the [Formula: see text] gravity with the Lagrange multiplier constraint and the scalar potential. We introduce field equations for the discussed theory and overview their properties. By using the general reconstruction scheme we obtain the power law cosmology model for the [Formula: see text] case as well as the model that describes symmetric bounce.

View Article and Find Full Text PDF

Recently introduced [Formula: see text] theory is generalized by adding dependence on the arbitrary scalar field [Formula: see text] and its kinetic term [Formula: see text], to explore non-minimal interactions between geometry, scalar and matter fields in context of the Gauss-Bonnet theories. The field equations for the resulting [Formula: see text] theory are obtained and show that particles follow non-geodesic trajectories in a perfect fluid surrounding. The energy conditions in the Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime are discussed for the generic function [Formula: see text].

View Article and Find Full Text PDF