Publications by authors named "Adam Z Hasik"

As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality.

View Article and Find Full Text PDF
Article Synopsis
  • Parasites can adapt to exploit different host species, but little is known about their genetic evolution in natural settings with diverse hosts.
  • Researchers studied Bartonella bacteria in rodent populations in Israel to understand how they adapt when infecting different rodent species.
  • After infecting rodents, they found that specific genetic mutations dominated, particularly in a gene related to adhesion, indicating that these mutations could help the bacteria escape immune responses and evolve to better target specific hosts.
View Article and Find Full Text PDF

Host populations often vary in the magnitude of coinfection they experience across environmental gradients. Furthermore, coinfection often occurs sequentially, with a second parasite infecting the host after the first has established a primary infection. Because the local environment and interactions between coinfecting parasites can both drive patterns of coinfection, it is important to disentangle the relative contributions of environmental factors and within-host interactions to patterns of coinfection.

View Article and Find Full Text PDF

Background: Pathogens face strong selection from host immune responses, yet many host populations support pervasive pathogen populations. We investigated this puzzle in a model system of Bartonella and rodents from Israel's northwestern Negev Desert. We chose to study this system because, in this region, 75-100% of rodents are infected with Bartonella at any given time, despite an efficient immunological response.

View Article and Find Full Text PDF

Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution.

View Article and Find Full Text PDF

Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host-species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta-analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non-parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host-species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect.

View Article and Find Full Text PDF

Determining the effects of parasites on host reproduction is key to understanding how parasites affect the underpinnings of selection on hosts. Although infection is expected to be costly, reducing mean fitness, infection could also increase variation in fitness costs among hosts, both of which determine the potential for selection on hosts. To test these ideas, we used a phylogenetically informed meta-analysis of 118 studies to examine how changes in the mean and variance in the outcome of reproduction differed between parasitized and non-parasitized hosts.

View Article and Find Full Text PDF

Predators have a key role shaping competitor dynamics in food webs. Perhaps the most obvious way this occurs is when predators reduce competitor densities. However, consumption could also generate phenotypic selection on prey that determines the strength of competition, thus coupling consumptive and trait-based effects of predators.

View Article and Find Full Text PDF

Whether assemblages of insect species locally coexist or are only being slowly lost from communities remains an enduring question. Addressing this question is especially critical in the wake of global change, which is expected to reshuffle biological communities and create novel interspecific interactions. In reviewing studies of putative insect species coexistence, we find that few have demonstrated necessary criteria to conclude that species coexist.

View Article and Find Full Text PDF