Publications by authors named "Adam Wojtas"

Psychedelics belong to the oldest psychoactive drugs. They arouse recent interest due to their therapeutic applications in the treatment of major depressive disorder, substance use disorder, end-of-life anxiety,= and anxiety symptoms, and obsessive-compulsive disorder. In this review, the current state of preclinical research on the mechanism of action, neurotoxicity, and behavioral impact of psychedelics is summarized.

View Article and Find Full Text PDF

The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine.

View Article and Find Full Text PDF

Since its emergence in the 1960s, the serotonergic theory of depression bore fruit in the discovery of a plethora of antidepressant drugs affecting the lives of millions of patients. While crucial in the history of drug development, recent studies undermine the effectiveness of currently used antidepressant drugs in comparison to placebo, emphasizing the long time it takes to initiate the therapeutic response and numerous adverse effects. Thus, the scope of contemporary pharmacological research shifts from drugs affecting the serotonin system to rapid-acting antidepressant drugs.

View Article and Find Full Text PDF

2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry.

View Article and Find Full Text PDF

Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively.

View Article and Find Full Text PDF

4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats' behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans.

View Article and Find Full Text PDF

Rationale: 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a potent serotonin 5-HT receptor agonist with hallucinogenic activity. There is no data on the 25I-NBOMe effect on brain neurotransmission and animal performance after chronic administration.

Objectives: We examined the effect of a 7-day treatment with 25I-NBOMe (0.

View Article and Find Full Text PDF

4-Bromo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25B-NBOMe) is a hallucinogen exhibiting high binding affinity for 5-HT serotonin receptors. In the present work, we investigated its effect on dopamine (DA), serotonin (5-HT), acetylcholine (ACh), and glutamate release in the rat frontal cortex, striatum, and nucleus accumbens. Hallucinogenic activity, impact on cognitive and motor functions, and anxiogenic/anxiolytic properties of this compound were also tested.

View Article and Find Full Text PDF

Background: 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a potent serotonin (5-HT) receptor agonist with hallucinogenic properties. The aim of our research was to examine the role of the 5-HT, 5-HT and 5-HT serotonin receptor subtypes in 25I-NBOMe hallucinogenic activity and its effect on dopamine (DA), 5-HT and glutamate release in the rat frontal cortex.

Methods: Hallucinogenic activity was investigated using the wet dog shake (WDS) test.

View Article and Find Full Text PDF

Background And Purpose: The concept of opioid ligands biased towards the G protein pathway with minimal recruitment of β-arrestin-2 is a promising approach for the development of novel, efficient, and potentially nonaddictive opioid therapeutics. A recently discovered biased μ-opioid receptor agonist, PZM21, showed analgesic effects with reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21.

View Article and Find Full Text PDF

NBOMes are N-benzylmethoxy derivatives of the 2C family hallucinogens. 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is one of the commonly used illicit drugs. It exhibits high binding affinity for 5-HT and 5-HT serotonin receptors.

View Article and Find Full Text PDF

Methcathinone (MC) and 3-fluoromethcathinone (3-FMC) are well-known members of the synthetic cathinone derivatives, the second most abused group of novel psychoactive substances (NPS). They are considered as methamphetamine-like cathinones, as they elicit their psychostimulatory effects via inhibition of monoamine uptake and enhanced release. The present study examines the effects of MC and 3-FMC on the spontaneous locomotor activity of mice and extracellular levels of dopamine and serotonin in the mouse striatum.

View Article and Find Full Text PDF

Background: Preclinical and clinical studies have suggested a beneficial effect of combination treatment with atypical antipsychotic drugs and antidepressants (ADs) in schizophrenia and in drug-resistant depression.

Methods: In the present study, we investigated the effect of chronic administration of risperidone and ADs (escitalopram or mirtazapine), given separately or jointly on the extracellular levels of dopamine (DA) and serotonin (5-HT) in the rat frontal cortex. The animals were administered risperidone (0.

View Article and Find Full Text PDF

Purpose: Pyrovalerone derivatives (α-pyrrolidinophenones) form a distinct branch of synthetic cathinones, a popular group of novel psychoactive substances, and exert strong psychostimulatory effects resulting from their high potency to inhibit dopamine (DA) and norepinephrine transporters, with negligible activity at the serotonin (5-HT) transporter. In contrast to the old generation α-pyrrolidinophenones, 3,4-MDPV and α-PVP, there is limited data on the pharmacology and toxicology of the novel analogs. Therefore, the present study assesses the in vivo effects of two new pyrovalerones, PV8 and PV9, along with those of α-PVP, on spontaneous locomotor activities of mice and extracellular DA and 5-HT levels in the mouse striatum.

View Article and Find Full Text PDF

According to the European Drug Report (2016), the use of synthetic cathinones, such as mephedrone, among young people has rapidly increased in the last years. Studies in humans indicate that psychostimulant drug use in adolescence increases risk of drug abuse in adulthood. Mephedrone by its interaction with transporters for dopamine (DAT) and serotonin (SERT) stimulates their release to the synaptic cleft.

View Article and Find Full Text PDF