The effects of a 45 min anneal at 800 °C on the physical properties and microstructure of a five-period GaAs Bi /GaAs Bi superlattice with y ≠ x were studied using room-temperature photoluminesence spectroscopy, high-resolution x-ray diffraction, high-angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM), and atom probe tomography (APT). The anneal resulted in a substantial increase of the photoluminesence intensity over that observed in the as-deposited sample, indicating annihilation of non-radiative recombination centers and stability of the superlattice structure during the anneal. However, some precipitation of Bi from the GaAs Bi also occurred.
View Article and Find Full Text PDFWe have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs(1-x)Bi(x) using high angle annular dark field ('Z-contrast') imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction.
View Article and Find Full Text PDF