The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu(2+) for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu(2+), indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group.
View Article and Find Full Text PDFPhosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-(32)P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments.
View Article and Find Full Text PDF