The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines '-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys.
View Article and Find Full Text PDFUnderstanding the functional relevance of G protein-coupled receptor (GPCR) homodimerization has been limited by the insufficient tools to assess asymmetric signaling occurring within dimers comprised of the same receptor type. We present unmatched bivalent ligands (UmBLs) to study the asymmetric function of melanocortin homodimers. UmBLs contain one agonist and one antagonist pharmacophore designed to target a melanocortin homodimer such that one receptor is occupied by an agonist and the other receptor by an antagonist pharmacophore.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2018
Glucobrassicin, a quantitatively significant constituent of Brassica vegetables, gives rise to indole-3-carbinol (I3C) and its dimer di-indolylmethane (DIM) when the vegetables are chewed. I3C and DIM have been extensively studied with respect to their anti-carcinogenic properties. However, the presumed intermediate isothiocyanate in their formation, indole-3-methyl isothiocyanate (IMITC), has to our knowledge never been observed, despite the fact that isothiocyanates derived from cruciferous vegetables are known to have anti-carcinogenic properties.
View Article and Find Full Text PDFThe tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in people who use tobacco products. NNK undergoes metabolic activation-a critical step in its mechanism of carcinogenesis-to an intermediate which reacts with DNA to form pyridyloxobutyl DNA base and phosphate adducts. Another important metabolic pathway of NNK is its conversion to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which similarly forms pyridylhydroxybutyl DNA base adducts that have been characterized previously.
View Article and Find Full Text PDFThe tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolically converted to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in a reaction which is both stereoselective and reversible. NNAL is also a lung carcinogen, with both (R)-NNAL and (S)-NNAL inducing a high incidence of lung tumours in rats. Both NNAL and NNK undergo metabolic activation to intermediates which react with DNA to form pyridylhydroxybutyl and pyridyloxobutyl DNA adducts, respectively.
View Article and Find Full Text PDFThe tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a powerful lung carcinogen in animal models and is considered a causative factor for lung cancer in tobacco users. NNK is stereoselectively and reversibly metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also a lung carcinogen. Both NNK and NNAL undergo metabolic activation by α-hydroxylation on their methyl groups to form pyridyloxobutyl and pyridylhydroxybutyl DNA base and phosphate adducts, respectively.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAH) are environmental carcinogens implicated as causes of cancer in certain industrial settings and in cigarette smokers. PAH require metabolic activation to exert their carcinogenic effects. One widely accepted pathway of metabolic activation proceeds through formation of "bay region" diol epoxides which are highly reactive with DNA and can cause mutations.
View Article and Find Full Text PDFIntroduction: Acrolein is a highly ciliatoxic agent, a toxic respiratory irritant, a cardiotoxicant, and a possible carcinogen present in tobacco smoke including hookah tobacco.
Methods: 105 hookah smokers and 103 non-smokers attended exclusively hookah smoking social events at either a hookah lounge or private home, and provided urine samples the morning of and the morning after the event. Samples were analyzed for 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of acrolein.
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, ) and '-nitrosonornicotine (NNN, ) results in the formation of 4-(3-pyridyl)-4-oxobutyl (POB)-DNA adducts, several of which have been previously identified both in vitro and in tissues of laboratory animals treated with NNK or NNN. However, 2'-deoxycytidine adducts formed in this process have been incompletely examined in previous studies. Therefore, in this study we prepared characterized standards for the identification of previously unknown 2'-deoxycytidine and 2'-deoxyuridine adducts that could be produced in these reactions.
View Article and Find Full Text PDFBivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm.
View Article and Find Full Text PDFN'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models.
View Article and Find Full Text PDFBenzene is a known human carcinogen which must be activated to benzene oxide (BO) to exert its carcinogenic potential. BO can be detoxified in vivo by reaction with glutathione and excretion in the urine as S-phenylmercapturic acid. This process may be catalyzed by glutathione S-transferases (GSTs), but kinetic data for this reaction have not been published.
View Article and Find Full Text PDFThe tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) is a potent lung carcinogen in laboratory animals and is believed to play a key role in the development of lung cancer in smokers. Metabolic activation of NNK leads to the formation of pyridyloxobutyl DNA adducts, a critical step in its mechanism of carcinogenesis. In addition to DNA nucleobase adducts, DNA phosphate adducts can be formed by pyridyloxobutylation of the oxygen atoms of the internucleotidic phosphodiester linkages.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
December 2014
Background: Benzene is a human hematotoxicant and a leukemogen that causes lymphohematopoietic cancers, especially acute myelogenous leukemia. We investigated uptake of benzene in hookah smokers and non-smokers attending hookah social events in naturalistic settings where hookah tobacco was smoked exclusively.
Methods: We quantified S-phenylmercapturic acid (SPMA), a metabolite of benzene, in the urine of 105 hookah smokers and 103 non-smokers.
Broccoli sprouts are a convenient and rich source of the glucosinolate, glucoraphanin, which can generate the chemopreventive agent, sulforaphane, an inducer of glutathione S-transferases (GST) and other cytoprotective enzymes. A broccoli sprout-derived beverage providing daily doses of 600 μmol glucoraphanin and 40 μmol sulforaphane was evaluated for magnitude and duration of pharmacodynamic action in a 12-week randomized clinical trial. Two hundred and ninety-one study participants were recruited from the rural He-He Township, Qidong, in the Yangtze River delta region of China, an area characterized by exposures to substantial levels of airborne pollutants.
View Article and Find Full Text PDFBenzene oxide, the initial metabolite of the human carcinogen benzene, reacts with DNA producing 7-phenylguanine (7-PhG) and other products. We developed a highly sensitive liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry-parallel reaction monitoring method for the analysis of 7-PhG in DNA. Accuracy and precision of the method were established and the detection limit was about 8amol of 7-PhG injected on the column and less than 1 adduct per 10(9) nucleotides in DNA.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2014
2-Hydroxypropylmercapturic acid (2-HPMA) is a urinary biomarker of exposure to propylene oxide, a mutagen and carcinogen to which humans are exposed through inhalation of cigarette smoke as well as in certain environmental and occupational settings. 2-HPMA is the final product of a detoxification pathway in which propylene oxide is conjugated with glutathione, and the resulting conjugate is further metabolized and excreted. We have developed and validated a liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric (LC-APCI-MS/MS) method for the rapid quantitation of 2-HPMA in human urine.
View Article and Find Full Text PDF