Publications by authors named "Adam T Smiley"

Article Synopsis
  • Notch is important for development and diseases, leading researchers to create inhibitors using small molecules and antibodies.* -
  • A novel nanobody was developed to inhibit Notch signaling, showing effectiveness in laboratory assays despite a low affinity for the Notch target.* -
  • By linking the nanobody to a toxin-derived membrane domain, researchers improved its potency, successfully inhibiting cancer cell proliferation similar to existing Notch blockers.*
View Article and Find Full Text PDF
Article Synopsis
  • The dystrophin-glycoprotein-complex (DGC), which connects the cell's internal structure to its external environment, is crucial for muscle function, and its disruption is linked to diseases like muscular dystrophy.
  • Recent research focused on understanding how matrix-metalloproteinases (MMPs) can cleave dystroglycan, a key protein in the DGC, and how this might contribute to such diseases.
  • By analyzing the structure of dystroglycan, scientists discovered how its unique C-terminal extension regulates MMP cleavage, which could help clarify mechanisms behind DGC disruption in muscular dystrophy.
View Article and Find Full Text PDF

The compound eye of has long been a model for studying genetics, development, neurodegeneration, and heterochromatin. Imaging and morphometry of adult and other insects is hampered by the low throughput, narrow focal plane, and small image sensors typical of stereomicroscope cameras. When data collection is distributed among many individuals or extended time periods, these limitations are compounded by inter-operator variability in lighting, sample positioning, focus, and post-acquisition processing.

View Article and Find Full Text PDF

Replication-initiating HUH-endonucleases (Reps) are enzymes that form covalent bonds with single-stranded DNA (ssDNA) in a sequence specific manner to initiate rolling circle replication. These nucleases have been co-opted for use in biotechnology as sequence specific protein-ssDNA bioconjugation fusion partners dubbed 'HUH-tags'. Here, we describe the engineering and characterization of a series of laboratory evolved HUH-tags capable of forming robust sequence-directed covalent bonds with unmodified RNA substrates.

View Article and Find Full Text PDF

Molecular tension sensors are central tools for mechanobiology studies but have limitations in interpretation. Reporting in Cell Reports Methods, Shoyer et al. discover that fluorescent protein photoswitching in concert with sensor extension may expand the use and interpretation of common force-sensing tools.

View Article and Find Full Text PDF

HUH-tags have emerged as versatile fusion partners that mediate sequence specific protein-ssDNA bioconjugation through a simple and efficient reaction. Here we present HUHgle, a python-based interactive tool for the visualization, design, and optimization of substrates for HUH-tag mediated covalent labeling of proteins of interest with ssDNA substrates of interest. HUHgle streamlines design processes by integrating an intuitive plotting interface with a search function capable of predicting and displaying protein-ssDNA bioconjugate formation efficiency and specificity in proposed HUH-tag/ssDNA sequence combinations.

View Article and Find Full Text PDF

Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry.

View Article and Find Full Text PDF

Replication-initiating HUH endonucleases (Reps) are sequence-specific nucleases that cleave and rejoin single-stranded DNA (ssDNA) during rolling-circle replication. These functions are mediated by covalent linkage of the Rep to its substrate post cleavage. Here, we describe the structures of the endonuclease domain from the Muscovy duck circovirus Rep in complex with its cognate ssDNA 10-mer with and without manganese in the active site.

View Article and Find Full Text PDF