Unmanned ground vehicles can capture a sub-canopy perspective for plant phenotyping, but their design and construction can be a challenge for scientists unfamiliar with robotics. Here we describe the necessary components and provide guidelines for designing and constructing an autonomous ground robot that can be used for plant phenotyping.
View Article and Find Full Text PDFPlant mechanical failure (lodging) causes global yield losses of 7%-66% in cereal crops. We have previously shown that the above-ground nodal roots (brace roots) in maize are critical for anchorage. However, it is unknown how brace root phenotypes vary across genotypes and the functional consequence of this variation.
View Article and Find Full Text PDFMechanical failure, known as lodging, negatively impacts yield and grain quality in crops. Limiting crop loss from lodging requires an understanding of the plant traits that contribute to lodging-resistance. In maize, specialized aerial brace roots are reported to reduce root lodging.
View Article and Find Full Text PDFThe acquisition of quantitative information on plant development across a range of temporal and spatial scales is essential to understand the mechanisms of plant growth. Recent years have shown the emergence of imaging methodologies that enable the capture and analysis of plant growth, from the dynamics of molecules within cells to the measurement of morphometricand physiological traits in field-grown plants. In some instances, these imaging methods can be parallelized across multiple samples to increase throughput.
View Article and Find Full Text PDF