The design and optimization of metabolic pathways, genetic systems, and engineered proteins rely on high-throughput assays to streamline design-build-test-learn cycles. However, assay development is a time-consuming and laborious process. Here, we create a generalizable approach for the tailored optimization of automated cell-free gene expression (CFE)-based workflows, which offers distinct advantages over in vivo assays in reaction flexibility, control, and time to data.
View Article and Find Full Text PDFIndustrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of-the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use.
View Article and Find Full Text PDFEnzyme Microb Technol
February 2024
Immunoglobulin-degrading proteases are secreted by pathogenic bacteria to weaken the host immune response, contributing to immune evasion mechanisms during an infection. Proteases specific to IgG and IgA immunoglobulin classes have previously been identified and characterized, and only a single report exists on a porcine specific IgM-degrading enzyme. It is unclear whether human pathogens also produce enzymes that can break down human IgM.
View Article and Find Full Text PDFAs the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems.
View Article and Find Full Text PDFMaple syrup urine disease (MSUD) is an inborn error of branched-chain amino acid metabolism affecting several thousand individuals worldwide. MSUD patients have elevated levels of plasma leucine and its metabolic product α-ketoisocaproate (KIC), which can lead to severe neurotoxicity, coma, and death. Patients must maintain a strict diet of protein restriction and medical formula, and periods of noncompliance or illness can lead to acute metabolic decompensation or cumulative neurological impairment.
View Article and Find Full Text PDFClassical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions.
View Article and Find Full Text PDFNucleic acid assays are not typically deployable in point-of-care settings because they require costly and sophisticated equipment for the control of the reaction temperature and for the detection of the signal. Here we report an instrument-free assay for the accurate and multiplexed detection of nucleic acids at ambient temperature. The assay, which we named INSPECTR (for internal splint-pairing expression-cassette translation reaction), leverages the target-specific splinted ligation of DNA probes to generate expression cassettes that can be flexibly designed for the cell-free synthesis of reporter proteins, with enzymatic reporters allowing for a linear detection range spanning four orders of magnitude and peptide reporters (which can be mapped to unique targets) enabling highly multiplexed visual detection.
View Article and Find Full Text PDFFabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease.
View Article and Find Full Text PDFAs the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems.
View Article and Find Full Text PDFThe detection of chemicals using natural allosteric transcription factors is a powerful strategy for point-of-use molecular sensing, particularly using fieldable cell-free gene expression (CFE) systems. However, the reliance of detection schemes on characterized protein-based sensors limits the number of measurable analytes. One alternative solution to this issue is to develop new sensors by generating RNA aptamers against the target analyte and then incorporating them directly into a riboswitch scaffold for ligand-inducible genetic control of a reporter protein.
View Article and Find Full Text PDFThe ε4 allele of the apolipoprotein E () gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and greatly influences the development of amyloid-β (Aβ) pathology. Our current study investigated the potential therapeutic effects of the anti-human APOE antibody HAE-4, which selectively recognizes human APOE that is co-deposited with Aβ in cerebral amyloid angiopathy (CAA) and parenchymal amyloid pathology. In addition, we tested whether HAE-4 provoked brain hemorrhages, a component of amyloid-related imaging abnormalities (ARIA).
View Article and Find Full Text PDFEffective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages.
View Article and Find Full Text PDFMost lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies.
View Article and Find Full Text PDFRecent advances in cell-free synthetic biology have spurred the development of molecular diagnostics that serve as effective alternatives to whole-cell biosensors. However, cell-free sensors for detecting manmade organic water contaminants such as pesticides are sparse, partially because few characterized natural biological sensors can directly detect such pollutants. Here, we present a platform for the cell-free detection of one critical water contaminant, atrazine, by combining a previously characterized cyanuric acid biosensor with a reconstituted atrazine-to-cyanuric acid metabolic pathway composed of several protein-enriched bacterial extracts mixed in a one pot reaction.
View Article and Find Full Text PDFAdvances in biosensor engineering have enabled the design of programmable molecular systems to detect a range of pathogens, nucleic acids, and chemicals. Here, we engineer and field-test a biosensor for fluoride, a major groundwater contaminant of global concern. The sensor consists of a cell-free system containing a DNA template that encodes a fluoride-responsive riboswitch regulating genes that produce a fluorescent or colorimetric output.
View Article and Find Full Text PDFRapid molecular biosensing is an emerging application area for synthetic biology. Here, we engineer a portable biosensor for cyanuric acid (CYA), an analyte of interest for human and environmental health, using a LysR-type transcription regulator (LTTR) from within the context of gene expression machinery. To overcome cross-host portability challenges of LTTRs, we rationally engineered hybrid promoters by integrating DNA elements required for transcriptional activity and ligand-dependent regulation from both hosts, which enabled to function as a whole-cell biosensor for CYA.
View Article and Find Full Text PDFCell-free biology is the activation of biological processes without the use of intact living cells. It has been used for more than 50 years across the life sciences as a foundational research tool, but a recent technical renaissance has facilitated high-yielding (grams of protein per litre), cell-free gene expression systems from model bacteria, the development of cell-free platforms from non-model organisms and multiplexed strategies for rapidly assessing biological design. These advances provide exciting opportunities to profoundly transform synthetic biology by enabling new approaches to the model-driven design of synthetic gene networks, the fast and portable sensing of compounds, on-demand biomanufacturing, building cells from the bottom up, and next-generation educational kits.
View Article and Find Full Text PDFOrganism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule.
View Article and Find Full Text PDFEasy-to-perform, relatively inexpensive blood diagnostics have transformed at-home healthcare for some patients, but they require analytical equipment and are not easily adapted to measuring other biomarkers. The requirement for reliable quantification in complex sample types (such as blood) has been a critical roadblock in developing and deploying inexpensive, minimal-equipment diagnostics. Here, we developed a platform for inexpensive, easy-to-use diagnostics that uses cell-free expression to generate colored readouts that are visible to the naked eye, yet quantitative and robust to the interference effects seen in complex samples.
View Article and Find Full Text PDFRecent advances in cell-free gene expression (CFE) systems have enabled their use for a host of synthetic biology applications, particularly for rapid prototyping of genetic circuits and biosensors. Despite the proliferation of cell-free protein synthesis platforms, the large number of currently existing protocols for making CFE extracts muddles the collective understanding of how the extract preparation method affects its functionality. A key aspect of extract performance relevant to many applications is the activity of the native host transcriptional machinery that can mediate protein synthesis.
View Article and Find Full Text PDFThis report is a summary of a workshop focusing on using telemedicine to facilitate the integrated care of chronic obstructive pulmonary disease (COPD). Twenty-five invited participants from 8 countries met for one and one-half days in Stresa, Italy on 7-8 September 2017, to discuss this topic. Participants included physiotherapists, nurses, a nurse practitioner, and physicians.
View Article and Find Full Text PDFThe apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid β (Aβ) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti-human apoE antibodies can decrease Aβ pathology in mice producing both human Aβ and apoE4, and investigated the mechanism underlying these effects.
View Article and Find Full Text PDFPathologic angiogenesis is mediated by the coordinated action of the vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling axis, along with crosstalk contributed by other receptors, notably αβ integrin. We build on earlier work demonstrating that point mutations can be introduced into the homodimeric VEGF ligand to convert it into an antagonist through disruption of binding to one copy of VEGFR2. This inhibitor has limited potency, however, due to loss of avidity effects from bivalent VEGFR2 binding.
View Article and Find Full Text PDFPediatr Emerg Med Pract
April 2015
Septic shock is a relatively rare but life-threatening condition in pediatric patients that can often be difficult to recognize in the emergency department. Once recognized, the emphasis of therapy is to reverse deficits in cellular respiration by increasing oxygen and other substrate delivery to tissue beds. Providing oxygen, improving tissue perfusion through augmentation of cardiac output, and administering antibiotics in a timely manner have all been shown to significantly improve outcomes in children with septic shock.
View Article and Find Full Text PDF