Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 μg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m of groundwater meeting the irrigation water quality standard of 50 μg/L.
View Article and Find Full Text PDFFaults can fundamentally change a groundwater flow regime and represent a major source of uncertainty in groundwater studies. Much research has been devoted to uncertainty around their location and their barrier-conduit behavior. However, fault timing is one aspect of fault uncertainty that appears to be somewhat overlooked.
View Article and Find Full Text PDFManaged aquifer recharge (MAR) is an increasingly used water management technique that enhances water availability while commonly generating water quality benefits. However, MAR activities may also trigger adverse geochemical reactions, especially during the injection of oxidant-enriched waters into reducing aquifers. Where this occurs, the environmental risks and the viability of mitigating them must be well understood.
View Article and Find Full Text PDFEnviron Sci Technol
May 2023
The mobility of molybdenum (Mo) in groundwater systems has received little attention, although a high intake of Mo is known to be detrimental to human and animal health. Here, we used a comprehensive hydrochemical data set collected during a multi-cycle aquifer storage and recovery test to study the mechanisms that control the mobility of Mo under spatially and temporally varying hydrochemical conditions. The model-based interpretation of the data indicated that the initial mobilization of Mo occurs as a sequence of reactions, in which (i) the aerobic injectant induces pyrite oxidation, (ii) the released acidity is partially buffered by the dissolution of dolomite that (iii) leads to the release of Mo with highly soluble sulfurized organic matter prevailing between the intercrystalline spaces of the dolomite matrix or incorporated in dolomite crystals.
View Article and Find Full Text PDFGroundwater contamination by geogenic arsenic is a global problem affecting nearly 200 million people. In South and Southeast Asia, a cost-effective mitigation strategy is to use oxidized low-arsenic aquifers rather than reduced high-arsenic aquifers. Aquifers with abundant oxidized iron minerals are presumably safeguarded against immediate arsenic contamination, due to strong sorption of arsenic onto iron minerals.
View Article and Find Full Text PDFSedimentary structures have unique geometries and anisotropic hydraulic conductivity, both of which control groundwater flow. Traditional finite-difference simulators (e.g.
View Article and Find Full Text PDFFe(II) oxidation coupled to nitrate reduction is a widely observed metabolism. However, to what extent the observed Fe(II) oxidation is driven enzymatically or abiotically by metabolically produced nitrite remains puzzling. To distinguish between biotic and abiotic reactions, we cultivated the mixotrophic nitrate-reducing Fe(II)-oxidizing Acidovorax strain BoFeN1 over a wide range of temperatures and compared it to abiotic Fe(II) oxidation by nitrite at temperatures up to 60°C.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2021
The evolution of groundwater quality in natural and contaminated aquifers is affected by complex interactions between physical transport and biogeochemical reactions. Identifying and quantifying the processes that control the overall system behavior is the key driver for experimentation and monitoring. However, we argue that, in contrast to other disciplines in earth sciences, process-based computer models are currently vastly underutilized in the quest for understanding subsurface biogeochemistry.
View Article and Find Full Text PDFFluoride-bearing apatite minerals such as fluorapatite (FAP: Ca(PO)F) and related carbonate-rich fluorapatites (CFA: Ca(PO)(CO,F)F), which occur ubiquitously as trace components of rocks and sediments, may act as sources for geogenic groundwater fluoride contamination. CFA dissolution often occurs in conjunction with declining dissolved calcium concentrations. Therefore, managed aquifer recharge (MAR) operations using deionised or low calcium source water are at risk of disturbing the naturally persisting geochemical equilibrium between CFA and the ambient groundwater and induce fluoride mobilisation.
View Article and Find Full Text PDFNumerous experimental studies have identified a multi-step reaction mechanism to control arsenite (As(III)) oxidation by manganese (Mn) oxides. The studies highlighted the importance of edge sites and intermediate processes, e.g.
View Article and Find Full Text PDFIn water-scarce areas, the reclamation of wastewater through advanced water treatment and subsequent reinjection into depleted aquifers is an increasingly attractive water management option. However, such injection can trigger a range of water-sediment interactions which need to be well understood and quantified to ensure sustainable operations. In this study, reactive transport modeling was used to analyze and quantify the interacting hydrogeochemical processes controlling the mobilization of fluoride and phosphate during injection of highly treated recycled water into a siliciclastic aquifer.
View Article and Find Full Text PDFCoal seam gas (CSG) extraction generates large volumes of coproduced water. Injection of the excess water into deep aquifers is often the most sustainable management option. However, such injection risks undesired sediment-water interactions that mobilize metal(loid)s in the receiving aquifer.
View Article and Find Full Text PDFRecent laboratory studies have demonstrated that coinjection of nitrate and Fe(II) (as ferrous sulfate) to As-bearing sediments can produce an Fe mineral assemblage containing magnetite capable of immobilizing advected As under a relatively wide range of aquifer conditions. This study combined laboratory findings with process-based numerical modeling approaches, to quantify the observed Fe mineral (trans)formation and concomitant As partitioning dynamics and to assess potential nitrate-Fe(II) remediation strategies for field implementation. The model development was guided by detailed solution and sediment data from our well-controlled column experiment.
View Article and Find Full Text PDFMicrobially driven nitrate-dependent iron (Fe) oxidation (NDFO) in subsurface environments has been intensively studied. However, the extent to which Fe(II) oxidation is biologically catalyzed remains unclear because no neutrophilic iron-oxidizing and nitrate reducing autotroph has been isolated to confirm the existence of an enzymatic pathway. While mixotrophic NDFO bacteria have been isolated, understanding the process is complicated by simultaneous abiotic oxidation due to nitrite produced during denitrification.
View Article and Find Full Text PDFOver the last few decades, significant progress has been made to characterize the extent, severity, and underlying geochemical processes of groundwater arsenic (As) pollution in S/SE Asia. However, comparably little effort has been made to merge the findings into frameworks that allow for a process-based quantitative analysis of observed As behavior and for predictions of its long-term fate. This study developed field-scale numerical modeling approaches to represent the hydrochemical processes associated with an in situ field injection of reactive organic carbon, including the reductive dissolution and transformation of ferric iron (Fe) oxides and the concomitant release of sorbed As.
View Article and Find Full Text PDFMillions of individuals worldwide are chronically exposed to hazardous concentrations of arsenic from contaminated drinking water. Despite massive efforts toward understanding the extent and underlying geochemical processes of the problem, numerical modeling and reliable predictions of future arsenic behavior remain a significant challenge. One of the key knowledge gaps concerns a refined understanding of the mechanisms that underlie arsenic mobilization, particularly under the onset of anaerobic conditions, and the quantification of the factors that affect this process.
View Article and Find Full Text PDF