Publications by authors named "Adam Shih-Yuan Lee"

This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8.

View Article and Find Full Text PDF

For rapid screening and quantification of an antisera antibody, a nanometer bithiophene-based conductive biolinker can enhanced signal performance and can be used to verify the interaction of an anti-IFN-γ antibody with an IFN-γ protein. The experimental measurements take a generic approach which takes advantage of the functionality of thiophene-based linkers for biosensors. Effects associated with using bithiophene as a biolinker for surface plasmon resonance (SPR) spectroscopy are examined in this paper.

View Article and Find Full Text PDF

We developed a liquid crystal (LC) sensor system for detecting mercuric ion (Hg(2+)) in aqueous solutions. In this system, 4-cyano-4'-pentyl biphenyl (5CB) was doped with a sulfur- and nitrogen-containing ligand 5-(pyridine-4-yl)-2-(5-(pyridin-4-yl)thiophen-2-yl)thiazole (ZT) as the Hg(2+) specific LCs. When the system was immersed in the solution containing Hg(2+), the complex of ZT and Hg(2+) formed, which disrupted the orientation of LC and lead to a dark-to-bright transition of the image of LCs.

View Article and Find Full Text PDF

We developed a label-free impedance biosensor based on an innovative conductive linker for detecting antibody-antigen interactions. As the often used conventional long chain thiol is a poor conductor, it is not a suitable material for use in a faradaic biosensor. In this study, we adopted a thiophene-based conductive bio-linker to form a self-assembled monolayer and to immobilize the bio-molecules.

View Article and Find Full Text PDF

Emerging evidence indicates that the conformation of C-reactive protein (CRP) plays important roles in human inflammation and cardiovascular disease (CVD). The different conformations in the structure of CRP under different pH conditions remain an important issue to be investigated for explaining various functions of CRP under certain physiologic and pathologic conditions. We directly measured the pH-induced conformational changes in the structure of CRP by dual polarization interferometry (DPI).

View Article and Find Full Text PDF

A series of beta-(trimethylsilyl)ethoxymethyl ethers were hydrolyzed to their corresponding alcohols in high yields by using a catalytic amount of CBr4 (15%) in MeOH under refluxing reaction conditions. The chemoselective deprotection between trialkylsilyl and beta-(trimethylsilyl)ethoxymethyl-protected alcohols can be achieved by using an alcohol with steric hindrance such as iPrOH. The selectivity also can be achieved in the CBr4/MeOH reaction mixture under ultrasonic reaction conditions.

View Article and Find Full Text PDF