Background: Mutations within the Von Hippel-Lindau (VHL) tumor suppressor gene are known to cause VHL disease, which is characterized by the formation of cysts and tumors in multiple organs of the body, particularly clear cell renal cell carcinoma (ccRCC). A major challenge in clinical practice is determining tumor risk from a given mutation in the VHL gene. Previous efforts have been hindered by limited available clinical data and technological constraints.
View Article and Find Full Text PDFThe greatest challenge in drug discovery remains the high rate of attrition across the different phases of the process, which cost the industry billions of dollars every year. While all phases remain crucial to ensure pharmaceutical-level safety, quality, and efficacy of the end product, streamlining these efforts toward compounds with success potential is pivotal for a more efficient and cost-effective process. The use of artificial intelligence (AI) within the pharmaceutical industry aims at just this, and has applications in preclinical screening for biological activity, optimization of pharmacokinetic properties for improved drug formulation, early toxicity prediction which reduces attrition, and pre-emptively screening for genetic changes in the biological target to improve therapeutic longevity.
View Article and Find Full Text PDF