The characterization of ligand binding modes is a crucial step in the drug discovery process and is especially important in campaigns arising from phenotypic screening, where the protein target and binding mode are unknown at the outset. Elucidation of target binding regions is typically achieved by X-ray crystallography or photoaffinity labeling (PAL) approaches; yet, these methods present significant challenges. X-ray crystallography is a mainstay technique that has revolutionized drug discovery, but in many cases structural characterization is challenging or impossible.
View Article and Find Full Text PDFAlthough current antiretroviral therapy can control HIV-1 replication and prevent disease progression, it is not curative. Identifying mechanisms that can lead to eradication of persistent viral reservoirs in people living with HIV-1 (PLWH) remains an outstanding challenge to achieving cure. Utilizing a phenotypic screen, we identified a novel chemical class capable of killing HIV-1 infected peripheral blood mononuclear cells.
View Article and Find Full Text PDFImmune checkpoint blockade (ICB) leads to durable and complete tumour regression in some patients but in others gives temporary, partial or no response. Accordingly, significant efforts are underway to identify tumour-intrinsic mechanisms underlying ICB resistance. Results from a published CRISPR screen in a mouse model suggested that targeting STUB1, an E3 ligase involved in protein homeostasis, may overcome ICB resistance but the molecular basis of this effect remains unclear.
View Article and Find Full Text PDFOver half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y.
View Article and Find Full Text PDFInhibiting the NLRP3 inflammasome mediates inflammation in an extensive number of preclinical models. As excitement in this field has grown, several companies have recently initiated testing of direct NLRP3 inhibitors in the clinic. At the same time, the NLRP3 inflammasome is part of a larger pro-inflammatory pathway, whose modulation is also being explored.
View Article and Find Full Text PDFThe development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria.
View Article and Find Full Text PDFDorsal root ganglion (DRG) are a key tissue in the nervous system that have a role in neurological disease, particularly pain. Despite the importance of this tissue, the proteome of DRG is poorly understood, and it is unknown whether the proteome varies between organisms or different DRG along the spine. Therefore, we profiled the proteome of human and rat DRG.
View Article and Find Full Text PDFCompound potency is a key metric that is often used to drive medicinal chemistry programs. Compound potency is also taken into account when identifying the mechanism of action of compounds whose pharmacological target is unknown, particularly when these compounds are identified in phenotypic screens. Often compound potency is determined from assays using recombinantly generated, purified protein.
View Article and Find Full Text PDFBone metastasis is a deadly consequence of cancers, in which osteoclast forms a vicious cycle with tumor cells. Bone metastasis attenuation by clinical usage of osteoclast inhibitors and in our osteopetrotic mouse genetic models with β-catenin constitutive activation or peroxisome proliferator-activated receptor γ deficiency fully support the important role of osteoclast in driving the bone metastatic niche. However, the mechanisms for this "partnership in crime" are underexplored.
View Article and Find Full Text PDFLoss of LIPA activity leads to diseases such as Wolman's Disease and Cholesterol Ester Storage Disease. While it is possible to measure defects in LIPA protein levels, it is difficult to directly measure LIPA activity in cells. In order to measure LIPA activity directly we developed a LIPA specific activity based probe.
View Article and Find Full Text PDFNuclear receptors (NRs) are key regulators of gene expression and physiology. Nearly half of all human NRs lack endogenous ligands including estrogen-related receptor α (ERRα). ERRα has important roles in cancer, metabolism, and skeletal homeostasis.
View Article and Find Full Text PDFMitogen-activated protein kinase 4 (MAP4K4) regulates the MEK kinase cascade and is implicated in cytoskeletal rearrangement and migration; however, identifying MAP4K4 substrates has remained a challenge. To ascertain MAP4K4-dependent phosphorylation events, we combined phosphoproteomic studies of MAP4K4 inhibition with in vitro assessment of its kinase specificity. We identified 235 phosphosites affected by MAP4K4 inhibition in cells and found that pTP and pSP motifs were predominant among them.
View Article and Find Full Text PDFAdiponectin is an important adipokine. Increasing evidence suggests that altered adiponectin levels are linked with metabolic and inflammatory disorders. Here we report an important yet previously unrecognized function of adiponectin in lactation by which maternal adiponectin determines the inflammatory status in the nursing neonates.
View Article and Find Full Text PDFThe existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs.
View Article and Find Full Text PDFThe application of ribosome profiling and mass spectrometry technologies has recently revealed that the human proteome is larger than previously appreciated. Short open reading frames (sORFs), which are difficult to identify using traditional gene-finding algorithms, constitute a significant fraction of unknown protein-coding genes. Thus, experimental approaches to identify sORFs provide invaluable insight into the protein-coding potential of genomes.
View Article and Find Full Text PDFThe crystal structure of Rad4/Rad23, the yeast homolog of the human nucleotide excision repair (NER) lesion recognition factor XPC-RAD23B ( Min , J. H. and Pavletich , N.
View Article and Find Full Text PDFUnderstanding the interactions between small molecules and proteins can be approached from different perspectives and is important for the advancement of basic science and drug development. Chemists often use bioactive small molecules, such as natural products or synthetic compounds, as probes to identify therapeutically relevant protein targets. Biochemists and biologists often begin with a specific protein and seek to identify the endogenous metabolites that bind to it.
View Article and Find Full Text PDFThe structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N(2)-dG) and adenine (N(6)-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N(2)-dG linkage site is ∼35 times more susceptible to NER dual incisions than the stereochemically identical N(6)-dA adduct.
View Article and Find Full Text PDFThe complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported.
View Article and Find Full Text PDFThe impact of a bulky DNA lesion on the structure and dynamics of a nucleosome core particle (NCP) containing a lesion derived from the unusually potent tumorigen dibenzo[a,l]pyrene that resists nucleotide excision repair (NER) in free DNA was investigated using 65 ns molecular dynamics simulations. Our results reveal that, relative to unmodified NCP, the lesion stabilizes the nucleosome via stacking interactions, improved Watson-Crick base pairing, hydrogen bonding between DNA and histones, and damped dynamics. These findings suggest that such lesions should be as resistant to NER in the nucleosome environment as they are in free DNA.
View Article and Find Full Text PDF