NKG2D ligands are widely expressed in solid and hematologic malignancies but absent or poorly expressed on healthy tissues. We conducted a phase I dose-escalation study to evaluate the safety and feasibility of a single infusion of NKG2D-chimeric antigen receptor (CAR) T cells, without lymphodepleting conditioning in subjects with acute myeloid leukemia/myelodysplastic syndrome or relapsed/refractory multiple myeloma. Autologous T cells were transfected with a γ-retroviral vector encoding a CAR fusing human NKG2D with the CD3ζ signaling domain.
View Article and Find Full Text PDFBackground Aims: Adoptive cell therapy employing natural killer group 2D (NKG2D) chimeric antigen receptor (CAR)-modified T cells has demonstrated preclinical efficacy in several model systems, including hematological and solid tumors. We present comprehensive data on manufacturing development and clinical production of autologous NKG2D CAR T cells for treatment of acute myeloid leukemia and multiple myeloma (ClinicalTrials.gov Identifier: NCT02203825).
View Article and Find Full Text PDFThe collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro.
View Article and Find Full Text PDFThe shared characteristics of rheumatoid arthritis (RA) and cancer, particularly their unchecked growth and invasive behaviors, have been apparent for some time. However, the molecular mechanisms underlying these similarities are not clear. In a recent issue of Arthritis Research & Therapy, Abreu and colleagues link a well-studied oncogene, Ras, with expression of matrix metalloproteinase-3 (MMP-3) in RA.
View Article and Find Full Text PDFSimilarities in the pathologies of autoimmune diseases and cancer have been noted for at least 30 years. Inflammatory cytokines and growth factors mediate cell proliferation, and proteinases, especially the collagenase, Matrix Metalloproteinase-1 (MMP-1), contribute to disease progression by remodeling the extracellular matrix and modulating the microenvironment. This review focuses on two cancers (melanoma and breast) and on the autoimmune disorder, rheumatoid arthritis (RA), and discusses the activated stromal cells found in these diseases.
View Article and Find Full Text PDFIntroduction: We recently described the ability of retinoid X receptor (RXR) ligand LG100268 (LG268) to inhibit interleukin-1-beta (IL-1-beta)-driven matrix metalloproteinase-1 (MMP-1) and MMP-13 gene expression in SW-1353 chondrosarcoma cells. Other investigators have demonstrated similar effects in chondrocytes treated with rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARgamma), for which RXR is an obligate dimerization partner. The goals of this study were to evaluate the inhibition of IL-1-beta-induced expression of MMP-1 and MMP-13 by combinatorial treatment with RXR and PPARgamma ligands and to investigate the molecular mechanisms of this inhibition.
View Article and Find Full Text PDFA mouse strain was identified with a recessive genetic lesion, which spontaneously developed a lymphoproliferative autoimmune syndrome exhibiting features of systemic lupus erythematosus. Positional mapping of the disease-associated locus revealed a lesion in Rasgrp1 that prevented the translation of the RasGRP1 protein. T cells from these mice failed to activate Ras or proliferate vigorously following antigen encounter and showed defects in positive selection.
View Article and Find Full Text PDF