While significant effort has been devoted to understand the role of intraurban characteristics on sustainability and growth, much remains to be understood about the effect of interurban interactions and the role cities have in determining each other's urban welfare. Here we consider a global mobility network of population flows between cities as a proxy for the communication between these regions, and analyze how it correlates with socioeconomic indicators. We use several measures of centrality to rank cities according to their importance in the mobility network, finding PageRank to be the most effective measure for reflecting these prosperity indicators.
View Article and Find Full Text PDFThe ongoing SARS-CoV-2 pandemic has been holding the world hostage for several years now. Mobility is key to viral spreading and its restriction is the main non-pharmaceutical interventions to fight the virus expansion. Previous works have shown a connection between the structural organization of cities and the movement patterns of their residents.
View Article and Find Full Text PDFThe Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases . The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions . Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions.
View Article and Find Full Text PDFThe Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2021
Mobility restrictions during the COVID-19 pandemic ostensibly prevented the public from transmitting the disease in public places, but they also hampered outdoor recreation, despite the importance of blue-green spaces (e.g., parks and natural areas) for physical and mental health.
View Article and Find Full Text PDFPrivacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion.
View Article and Find Full Text PDFUnderstanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings.
View Article and Find Full Text PDFAfter the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe.
View Article and Find Full Text PDFGiven the rapid recent trend of urbanization, a better understanding of how urban infrastructure mediates socioeconomic interactions and economic systems is of vital importance. While the accessibility of location-enabled devices as well as large-scale datasets of human activities, has fueled significant advances in our understanding, there is little agreement on the linkage between socioeconomic status and its influence on movement patterns, in particular, the role of inequality. Here, we analyze a heavily aggregated and anonymized summary of global mobility and investigate the relationships between socioeconomic status and mobility across a hundred cities in the US and Brazil.
View Article and Find Full Text PDFFollowing the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting late summer that was deadlier and more difficult to contain. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave. Here, we build a phylogeographic model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the COVID-19 resurgence in Europe.
View Article and Find Full Text PDFHuman mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike.
View Article and Find Full Text PDFThe Mumbai Suburban Railways, , are a key transit infrastructure of the city and is crucial for resuming normal economic activity. Due to high density during transit, the potential risk of disease transmission is high, and the government has taken a wait and see approach to resume normal operations. To reduce disease transmission, policymakers can enforce reduced crowding and mandate wearing of masks.
View Article and Find Full Text PDFDisease dynamics, human mobility, and public policies co-evolve during a pandemic such as COVID-19. Understanding dynamic human mobility changes and spatial interaction patterns are crucial for understanding and forecasting COVID-19 dynamics. We introduce a novel graph-based neural network(GNN) to incorporate global aggregated mobility flows for a better understanding of the impact of human mobility on COVID-19 dynamics as well as better forecasting of disease dynamics.
View Article and Find Full Text PDFThis work quantifies mobility changes observed during the different phases of the pandemic world-wide at multiple resolutions -- county, state, country -- using an anonymized aggregate mobility map that captures population flows between geographic cells of size 5 km . As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in flows. Further, in order to understand mixing within a region, we propose a new metric to quantify the effect of social distancing on the basis of mobility.
View Article and Find Full Text PDFThe geographic variation of human movement is largely unknown, mainly due to a lack of accurate and scalable data. Here we describe global human mobility patterns, aggregated from over 300 million smartphone users. The data cover nearly all countries and 65% of Earth's populated surface, including cross-border movements and international migration.
View Article and Find Full Text PDFLyme disease is the most common tick-borne disease in the Northern Hemisphere. Existing estimates of Lyme disease spread are delayed a year or more. We introduce Lymelight-a new method for monitoring the incidence of Lyme disease in real-time.
View Article and Find Full Text PDFThe recent trend of rapid urbanization makes it imperative to understand urban characteristics such as infrastructure, population distribution, jobs, and services that play a key role in urban livability and sustainability. A healthy debate exists on what constitutes optimal structure regarding livability in cities, interpolating, for instance, between mono- and poly-centric organization. Here anonymous and aggregated flows generated from three hundred million users, opted-in to Location History, are used to extract global Intra-urban trips.
View Article and Find Full Text PDFMachine learning has become an increasingly powerful tool for solving complex problems, and its application in public health has been underutilized. The objective of this study is to test the efficacy of a machine-learned model of foodborne illness detection in a real-world setting. To this end, we built FINDER, a machine-learned model for real-time detection of foodborne illness using anonymous and aggregated web search and location data.
View Article and Find Full Text PDF