Publications by authors named "Adam S Abbott"

Herein, we present for the first time a general methodology for obtaining arbitrary-order nuclear coordinate derivatives of electronic energies derived from quantum chemistry methods. By leveraging modern advances in automatic differentiation software, we demonstrate that exact derivatives can be obtained for any method. This innovation completely bypasses the issues associated with the computational stability of applying numerical differentiation methods and dispenses the need to derive challenging formulae for analytic energy derivatives.

View Article and Find Full Text PDF

Vinoxy radicals are involved in numerous atmospheric and combustion mechanisms. High-level theoretical methods have recently shed new light on the reaction of the unsubstituted vinoxy radical with O. The reactions of 1-methylvinoxy radical and 2-methylvinoxy radical with molecular oxygen have experimental high pressure limiting rate constants, k, 5-7 times higher than that of the vinoxy plus O reaction.

View Article and Find Full Text PDF

Bimolecular reactions involving stabilized Criegee intermediates (SCI) have been the target of many studies due to the role these molecules play in atmospheric chemistry. Recently, kinetic rates for the addition reaction of the simplest SCI (formaldehyde oxide) and its methylated analogue (acetone oxide) with methanol were reported both experimentally and theoretically. We re-examine the energy profile of these reactions by employing rigorous ab initio methods.

View Article and Find Full Text PDF

We introduce a free and open-source software package (PES-Learn) which largely automates the process of producing high-quality machine learning models of molecular potential energy surfaces (PESs). PES-Learn incorporates a generalized framework for producing grid points across a PES that is compatible with most electronic structure theory software. The newly generated or externally supplied PES data can then be used to train and optimize neural network or Gaussian process models in a completely automated fashion.

View Article and Find Full Text PDF

The peculiar electronic absorption spectrum of HCN has been of great interest to experiment. Herein, this system is studied extensively by applying theoretical methods to the ground and low-lying excited electronic states. Employing a large breadth of high-level computations, including coupled cluster [CCSD(T) and CCSDT(Q)] and multireference configuration interaction [MRCISD+Q] methods, we comprehensively demonstrate that the most recent experimental and theoretical interpretations of the electronic spectrum of HCN are in error.

View Article and Find Full Text PDF

Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation.

View Article and Find Full Text PDF

The chlorine peroxy radical (ClOO) has historically been a highly problematic system for theoretical studies. In particular, the erratic ab initio predictions of the Cl-O bond length reported in the literature thus far exhibit unacceptable errors with respect to the experimental structure. In light of the widespread disagreement observed, we present a careful and systematic investigation of the ClOO geometry toward the basis set and correlation limits of single reference ab initio theory, employing the cc-pVXZ (X = D, T, Q, 5, 6) basis sets extrapolated to the complete basis set limit and coupled cluster theory through single, double, triple, and perturbative quadruple excitations [CCSDT(Q)].

View Article and Find Full Text PDF

Vinyl alcohol and acetaldehyde are isoelectronic products of incomplete butanol combustion. Along with the radicals resulting from the removal of atomic hydrogen or the hydroxyl radical, these species are studied here using ab initio methods as complete as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)], with basis sets as large as cc-pV5Z. The relative energies provided herein are further refined by including corrections for relativistic effects, the frozen core approximation, and the Born-Oppenheimer approximation.

View Article and Find Full Text PDF