While individual susceptibility to traumatic brain injury (TBI) has been speculated, past work does not provide an analysis considering how physical features of an individual's brain (e.g., brain size, shape), impact direction, and brain network features can holistically contribute to the risk of suffering a TBI from an impact.
View Article and Find Full Text PDFThe white matter tracts forming the intricate wiring of the brain are subject-specific; this heterogeneity can complicate studies of brain function and disease. Here we collapse tractography data from the Human Connectome Project (HCP) into structural connectivity (SC) matrices and identify groups of similarly wired brains from both sexes. To characterize the significance of these architectural groupings, we examined how similarly wired brains led to distinct groupings of neural activity dynamics estimated with Kuramoto oscillator models (KMs).
View Article and Find Full Text PDFThe brain is a complex network consisting of neuron cell bodies in the gray matter and their axonal projections, forming the white matter tracts. These neurons are supported by an equally complex vascular network as well as glial cells. Traumatic brain injury (TBI) can lead to the disruption of the structural and functional brain networks due to disruption of both neuronal cell bodies in the gray matter as well as their projections and supporting cells.
View Article and Find Full Text PDF