Publications by authors named "Adam Pockett"

Multijunction solar cells offer a route to exceed the Shockley-Queisser limit for single-junction devices. In a few short years, silicon-perovskite tandems have significantly passed the efficiency of the best silicon single-junction cells. For scalable solution processing of silicon-perovskite tandem devices, with the avoidance of vacuum processing steps, a flat silicon sub-cell is normally required.

View Article and Find Full Text PDF

Small perturbation techniques have proven to be useful tools for the investigation of perovskite solar cells. A correct interpretation of the spectra given by impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS), and intensity-modulated photovoltage spectroscopy (IMVS) is key for the understanding of device operation. The utilization of a correct equivalent circuit to extract real parameters is essential to make this good interpretation.

View Article and Find Full Text PDF

Organic solar cells utilise thin interlayer materials between the active layer and metal electrodes to improve stability and performance. In this work, we combine transient photovoltage (TPV) and impedance spectroscopy (EIS) measurements to study how degradation affects both the active layer and the interlayer. We show that neither technique alone can provide a complete insight into both of these regions: TPV is more suited to studying degradation of the active layer; EIS clearly identifies the properties of the interlayer.

View Article and Find Full Text PDF

Tin selenide (SnSe) has attracted much attention in the field of thermoelectrics since the discovery of the record figure of merit (ZT) of 2.6 ± 0.3 along the b-axis of the material.

View Article and Find Full Text PDF

Perovskite solar cells (PSC) are shown to behave as coupled ionic-electronic conductors with strong evidence that the ionic environment moderates both the rate of electron-hole recombination and the band offsets in planar PSC. Numerous models have been presented to explain the behaviour of perovskite solar cells, but to date no single model has emerged that can explain both the frequency and time dependent response of the devices. Here we present a straightforward coupled ionic-electronic model that can be used to explain the large amplitude transient behaviour and the impedance response of PSC.

View Article and Find Full Text PDF