Background: A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain.
View Article and Find Full Text PDFStructural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.
View Article and Find Full Text PDFThe combination of ultra-long (UL) Oxford Nanopore Technologies (ONT) sequencing reads with long, accurate Pacific Bioscience (PacBio) High Fidelity (HiFi) reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy.
View Article and Find Full Text PDFRobertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious.
View Article and Find Full Text PDFRibosomal RNA (rRNA) genes exist in multiple copies arranged in tandem arrays known as ribosomal DNA (rDNA). The total number of gene copies is variable, and the mechanisms buffering this copy number variation remain unresolved. We surveyed the number, distribution, and activity of rDNA arrays at the level of individual chromosomes across multiple human and primate genomes.
View Article and Find Full Text PDFMotivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via a dot plot. Innovative approaches such as StainedGlass have improved upon this classic visualization by rendering dot plots as a heatmap of sequence identity, enabling researchers to better visualize multi-megabase tandem repeat arrays within centromeres and other heterochromatic regions of the genome. However, computing the similarity estimates for heatmaps requires high computational overhead and can suffer from decreasing accuracy.
View Article and Find Full Text PDFTelomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.
View Article and Find Full Text PDFMotivation: Since 2016, the number of microbial species with available reference genomes in NCBI has more than tripled. Multiple genome alignment, the process of identifying nucleotides across multiple genomes which share a common ancestor, is used as the input to numerous downstream comparative analysis methods. Parsnp is one of the few multiple genome alignment methods able to scale to the current era of genomic data; however, there has been no major release since its initial release in 2014.
View Article and Find Full Text PDFMotivation: A common method for analyzing genomic repeats is to produce a sequence similarity matrix visualized via a dot plot. Innovative approaches such as StainedGlass have improved upon this classic visualization by rendering dot plots as a heatmap of sequence identity, enabling researchers to better visualize multi-megabase tandem repeat arrays within centromeres and other heterochromatic regions of the genome. However, computing the similarity estimates for heatmaps requires high computational overhead and can suffer from decreasing accuracy.
View Article and Find Full Text PDFThe combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy.
View Article and Find Full Text PDFis a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two species, and , placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male and identified cell-type markers for all major cell types, including key i-cell markers.
View Article and Find Full Text PDFMotivation: Since 2016, the number of microbial species with available reference genomes in NCBI has more than tripled. Multiple genome alignment, the process of identifying nucleotides across multiple genomes which share a common ancestor, is used as the input to numerous downstream comparative analysis methods. Parsnp is one of the few multiple genome alignment methods able to scale to the current era of genomic data; however, there has been no major release since its initial release in 2014.
View Article and Find Full Text PDFWe introduce metaMDBG, a metagenomics assembler for PacBio HiFi reads. MetaMDBG combines a de Bruijn graph assembly in a minimizer space with an iterative assembly over sequences of minimizers to address variations in genome coverage depth and an abundance-based filtering strategy to simplify strain complexity. For complex communities, we obtained up to twice as many high-quality circularized prokaryotic metagenome-assembled genomes as existing methods and had better recovery of viruses and plasmids.
View Article and Find Full Text PDFComplete, telomere-to-telomere (T2T) genome assemblies promise improved analyses and the discovery of new variants, but many essential genomic resources remain associated with older reference genomes. Thus, there is a need to translate genomic features and read alignments between references. Here we describe a method called levioSAM2 that performs fast and accurate lift-over between assemblies using a whole-genome map.
View Article and Find Full Text PDFSharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate.
View Article and Find Full Text PDFWe introduce a novel metagenomics assembler for high-accuracy long reads. Our approach, implemented as metaMDBG, combines highly efficient de Bruijn graph assembly in minimizer space, with both a multi- approach for dealing with variations in genome coverage depth and an abundance-based filtering strategy for simplifying strain complexity. The resulting algorithm is more efficient than the state-of-the-art but with better assembly results.
View Article and Find Full Text PDFis a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two species, and , placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male and identified cell type markers for all major cell types, including key i-cell markers.
View Article and Find Full Text PDF