This paper describes the extrusion pressure's effect on composite hydrogel inks' filaments subjected to three point bending collapse tests. The composite considered in this work consists of an alginate-poloxamer hydrogel reinforced with flax fibres. Increased extrusion pressure resulted in more asymmetrical filaments between the support pillars.
View Article and Find Full Text PDFChitosan bio-adhesives bond strongly with various biological tissues, such as skin, mucosa, and internal organs. Their adhesive ability arises from amino acid and hydroxyl groups in chitosan, facilitating interactions with tissue surfaces through chemical (ionic, covalent, and hydrogen) and physical (chain entanglement) bonding. As non-toxic, biodegradable, and biocompatible materials, chitosan bio-adhesives are a safe option for medical therapies.
View Article and Find Full Text PDFThe availability of grafts to replace small-diameter arteries remains an unmet clinical need. Here, the validated methodology is reported for a novel hybrid tissue-engineered vascular graft that aims to match the natural structure of small-size arteries. The blood vessel mimic (BVM) comprises an internal conduit of co-electrospun gelatin and polycaprolactone (PCL) nanofibers (corresponding to the tunica intima of an artery), reinforced by an additional layer of PCL aligned fibers (the internal elastic membrane).
View Article and Find Full Text PDFHydrogels find widespread applications in biomedicine because of their outstanding biocompatibility, biodegradability, and tunable material properties. Hydrogels can be chemically functionalized or reinforced to respond to physical or chemical stimulation, which opens up new possibilities in the emerging field of intelligent bioelectronics. Here, the state-of-the-art in functional hydrogel-based transistors and memristors is reviewed as potential artificial synapses.
View Article and Find Full Text PDFMany pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites.
View Article and Find Full Text PDFMost organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.
View Article and Find Full Text PDFCorrection for 'Flax fibre reinforced alginate poloxamer hydrogel: assessment of mechanical and 4D printing potential' by Charles de Kergariou , , 2024, , 4021-4034, https://doi.org/10.1039/D4SM00135D.
View Article and Find Full Text PDFEmerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink.
View Article and Find Full Text PDFThe mechanical and printing performance of a new biomaterial, flax fibre-reinforced alginate-poloxamer based hydrogel, for load-bearing and 4D printing biomedical applications is described in this study. The-self suspendable ability of the material was evaluated by optimising the printing parameters and conducting a collapse test. 1% of the flax fibre weight fraction was sufficient to obtain an optimum hydrogel composite from a mechanical perspective.
View Article and Find Full Text PDFSurgical treatment of pediatric congenital heart disease with tissue grafts is a lifesaving intervention. Decellularization to reduce immunogenicity of tissue grafts is an increasingly popular alternative to glutaraldehyde fixation. Here, we present a protocol to decellularize porcine right ventricular outflow tracts using a 3D printed flow chamber.
View Article and Find Full Text PDFNeuronal tissue engineering has immense potential for treating neurological disorders and facilitating nerve regeneration. Conducting polymers (CPs) have emerged as a promising class of materials owing to their unique electrical conductivity and biocompatibility. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-hexylthiophene) (P3HT), polypyrrole (PPy), and polyaniline (PANi), have been extensively explored for their ability to provide electrical cues to neural cells.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) are becoming widely adopted as vectors for the delivery of therapeutic payloads but generally lack intrinsic tissue-homing properties. These extracellular vesicle (EV) mimetics can be targeted toward the liver, lung, or spleen via charge modification of their lipid headgroups. Homing to other tissues has only been achieved via covalent surface modification strategies using small-molecule ligands, peptides, or monoclonal antibodies─methods that are challenging to couple with large-scale manufacturing.
View Article and Find Full Text PDFNanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering.
View Article and Find Full Text PDFThe burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy.
View Article and Find Full Text PDFThe appreciation of how conventional and fossil-based materials could be harmful to our planet is growing, especially when considering single-use and non-biodegradable plastics manufactured from fossil fuels. Accordingly, tackling climate change and plastic waste pollution entails a more responsible approach to sourcing raw materials and the adoption of less destructive end-of-life pathways. Livestock animals, in particular ruminants, process plant matter using a suite of mechanical, chemical and biological mechanisms through the act of digestion.
View Article and Find Full Text PDFWe describe the development of a high-throughput bioprinted colorectal cancer (CRC) spheroid platform with high levels of automation, information content, and low cell number requirement. This is achieved via the formulation of a hydrogel bioink with a compressive Young's modulus that is commensurate with that of colonic tissue (1-3 kPa), which supports exponential growth of spheroids from a wide range of CRC cell lines. The resulting spheroids display tight cell-cell junctions, bioink matrix-cell interactions and necrotic hypoxic cores.
View Article and Find Full Text PDFThe surface of a carboxylate-enriched octuple mutant of Bacillus subtilis lipase A (8M) is chemically anionized to produce core (8M)-shell (cationic polymer surfactants) bionanoconjugates in protein liquid form, which are termed anion-type biofluids. The resultant lipase biofluids exhibit a 2.5-fold increase in hydrolytic activity when compared with analogous lipase biofluids based on anionic polymer surfactants.
View Article and Find Full Text PDFHere, we describe a facile route to the synthesis of enzymatically active highly fabricable plastics, where the enzyme is an intrinsic component of the material. This is facilitated by the formation of an electrostatically stabilized enzyme-polymer surfactant nanoconstruct, which, after lyophilization and melting, affords stable macromolecular dispersions in a wide range of organic solvents. A selection of plastics can then be co-dissolved in the dispersions, which provides a route to bespoke 3D enzyme plastic nanocomposite structures using a wide range of fabrication techniques, including melt electrowriting, casting, and piston-driven 3D printing.
View Article and Find Full Text PDFTargeting stem cells to cartilage lesions has the potential to enhance engraftment and chondrogenesis. Denatured type II collagen fibrils (gelatin) are exposed in lesions at the surface of osteoarthritic articular cartilage and are therefore ideal target sites. We have designed and investigated chimeric mutants of the three modules of the MMP-2 collagen binding domain (CBD) as potential ligands for stem cell targeting.
View Article and Find Full Text PDFCatalytically active materials for the enhancement of personalized protective equipment (PPE) could be advantageous to help alleviate threats posed by neurotoxic organophosphorus compounds (OPs). Accordingly, a chimeric protein comprised of a supercharged green fluorescent protein (scGFP) and phosphotriesterase from (arPTE) was designed to drive the polymer surfactant (S)-mediated self-assembly of microclusters to produce robust, enzymatically active materials. The chimera scGFP-arPTE was structurally characterized circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering, and its biophysical properties were determined.
View Article and Find Full Text PDFOne of the major challenges within the emerging field of injectable stem cell therapies for articular cartilage (AC) repair is the retention of sufficient viable cell numbers at the site of injury. Even when delivered via intra-articular injection, the number of stem cells retained at the target is often low and declines rapidly over time. To address this challenge, an artificial plasma membrane binding nanocomplex was rationally designed to provide human mesenchymal stem cells (hMSCs) with increased adhesion to articular cartilage tissue.
View Article and Find Full Text PDFBackground: In cancer nanomedicine, drugs are transported by nanocarriers through a biological system to produce a therapeutic effect. The efficacy of the treatment is affected by the ability of the nanocarriers to overcome biological transport barriers to reach their target. In this work, we focus on the process of nanocarrier penetration through tumour tissue after extravasation.
View Article and Find Full Text PDFThe interaction between proteins and hydration water stabilizes protein structure and promotes functional dynamics, with water translational motions enabling protein flexibility. Engineered solvent-free protein-polymer hybrids have been shown to preserve protein structure, function, and dynamics. Here, we used neutron scattering, protein and polymer perdeuteration, and molecular dynamics simulations to explore how a polymer dynamically replaces water.
View Article and Find Full Text PDFMyocardial infarction (MI) has been the primary cause of death in developed countries, resulting in a major psychological and financial burden for society. Current treatments for acute MI are directed toward rapid restoration of perfusion to limit damage to the myocardium, rather than promoting tissue regeneration and subsequent contractile function recovery. Regenerative cell therapies (CTs), in particular those using multipotent stem cells (SCs), are in the spotlight for treatment post-MI.
View Article and Find Full Text PDFCell therapies are emerging as a new therapeutic frontier for the treatment of ischemic disease. However, femoral occlusions can be challenging environments for effective therapeutic cell delivery. In this study, cell-engineered hybrid scaffolds are implanted around the occluded femoral artery and the therapeutic benefit through the formation of new collateral arteries is investigated.
View Article and Find Full Text PDF