Publications by authors named "Adam P W Johnston"

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by the cell cycle inhibitors Cdkn2a, Cdkn1a, and Trp53. Senescent cells are implicated in chronic diseases and tissue repair through their increased secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Here, we use spatial transcriptomics and single-cell RNA sequencing (scRNAseq) to demonstrate that cells displaying senescent characteristics are "transiently" present within regenerating skeletal muscle and within the muscles of D2-mdx mice, a model of Muscular Dystrophy.

View Article and Find Full Text PDF

Animals such as amphibians have an incredible capacity for regeneration with some being able to regrow their tail or appendages. Although some mammalian tissues like the skin and bones can repair following injury, there are only a few examples of true multilineage regeneration, including the distal portion of the digit tip. In both amphibians and mammals, however, to achieve successful repair or regeneration, it is now appreciated that intact nerve innervation is a necessity.

View Article and Find Full Text PDF

Peripheral innervation plays an important role in regulating tissue repair and regeneration. Here we provide evidence that injured peripheral nerves provide a reservoir of mesenchymal precursor cells that can directly contribute to murine digit tip regeneration and skin repair. In particular, using single-cell RNA sequencing and lineage tracing, we identify transcriptionally distinct mesenchymal cell populations within the control and injured adult nerve, including neural crest-derived cells in the endoneurium with characteristics of mesenchymal precursor cells.

View Article and Find Full Text PDF

Adult mammals have lost multi-tissue regenerative capacity, except for the distal digit, which is able to regenerate via mechanisms that remain largely unknown. Here, we show that, after adult mouse distal digit removal, nerve-associated Schwann cell precursors (SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. When SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased and nail and bone regeneration were impaired.

View Article and Find Full Text PDF

Background: Human genetic disorders and transgenic mouse models have shown that mitochondrial DNA (mtDNA) mutations and telomere dysfunction instigate the aging process. Epidemiologically, exercise is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of exercise are well established, the molecular mechanisms instigating these observations remain unclear.

View Article and Find Full Text PDF

Here, we asked whether we could identify pharmacological agents that enhance endogenous stem cell function to promote skin repair, focusing on skin-derived precursors (SKPs), a dermal precursor cell population. Libraries of compounds already used in humans were screened for their ability to enhance the self-renewal of human and rodent SKPs. We identified and validated five such compounds, and showed that two of them, alprostadil and trimebutine maleate, enhanced the repair of full thickness skin wounds in middle-aged mice.

View Article and Find Full Text PDF

Recent reports of directed reprogramming have raised questions about the stability of cell lineages. Here, we have addressed this issue, focusing upon skin-derived precursors (SKPs), a dermally derived precursor cell. We show by lineage tracing that murine SKPs from dorsal skin originate from mesenchymal and not neural crest-derived cells.

View Article and Find Full Text PDF

Nerve-derived neural crest cells are essential for regeneration in certain animals, such as newts. Here, we asked whether they play a similar role during mammalian tissue repair, focusing on Sox2-positive neural crest precursors in skin. In adult skin, Sox2 was expressed in nerve-terminal-associated neural crest precursor cells (NCPCs) around the hair follicle bulge, and following injury was induced in nerve-derived cells, likely dedifferentiated Schwann cell precursors.

View Article and Find Full Text PDF

The role of ANG II in skeletal muscle and satellite cell regulation is largely unknown. Cardiotoxin (CTX) was used to investigate whether muscle injury activates a local ANG II signaling system. Following injury, immunohistochelmistry (IHC) analysis revealed a robust increase in the intensity of angiotensinogen and angiotensin type 1 (AT(1)) receptor expression.

View Article and Find Full Text PDF

The role of angiotensin II (Ang II) in skeletal muscle is poorly understood. We report that pharmacological inhibition of Ang II signaling or ablation of the AT1a receptor significantly impaired skeletal muscle growth following myotrauma, in vivo, likely due to impaired satellite cell activation and chemotaxis. In vitro experiments demonstrated that Ang II treatment activated quiescent myoblasts as evidenced by the upregulation of myogenic regulatory factors, increased number of β-gal+, Myf5-LacZ myoblasts and the acquisition of cellular motility.

View Article and Find Full Text PDF

A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed.

View Article and Find Full Text PDF

The role of angiotensin II (ANG II) in postnatal vasculogenesis and angiogenesis during skeletal muscle (SKM) regeneration is unknown. We examined the capacity of ANG II to stimulate capillary formation and growth during cardiotoxin-induced muscle regeneration in ACE inhibitor-treated ANG II type 1a receptor knockout (AT1a(-/-)) and C57Bl/6 control mice. Analysis of tibialis anterior (TA) cross-sections revealed 17% and 23% reductions in capillarization in AT1a(-/-) and captopril treated mice, respectively, when compared with controls, 21 days postinjury.

View Article and Find Full Text PDF

Background: The regulation of muscle stem cells in humans in response to muscle injury remains largely undefined. Recently, interleukin-6 (IL-6) has been implicated in muscle stem cell (satellite cell)-mediated muscle hypertrophy in animals; however, the role of IL-6 in the satellite cell (SC) response following muscle-lengthening contractions in humans has not been studied.

Methodology/principal Findings: Eight subjects (age 22+/-1 y; 79+/-8 kg) performed 300 maximal unilateral lengthening contractions (3.

View Article and Find Full Text PDF

Muscle and strength loss will occur during periods of physical inactivity and immobilization. Creatine supplementation may have a favorable effect on muscle mass and strength independently of exercise. The purpose of this study was to determine the effects of creatine supplementation on upper limb muscle mass and muscle performance after immobilization.

View Article and Find Full Text PDF

Skeletal muscle aging is associated with a significant loss of muscle mass, strength, function, and quality of life. In addition, the healthcare cost of aging and age-related disease is growing, and will continue to grow as a larger proportion of our population reaches retirement age and beyond. The mitochondrial theory of aging has been identified as a leading explanation of the aging process and describes a path leading to cellular senescence that includes electron transport chain deficiency, reactive oxygen species production, and the accumulation of mitochondrial DNA deletions and mutations.

View Article and Find Full Text PDF

Streptozotocin (STZ) is used extensively to induce pancreatic beta-cell death and ultimately diabetes mellitus in animal models. However, the direct effects of STZ on muscle are largely unknown. To delineate the effects of STZ from the effects of hypoinsulinemia/hyperglycemia, we injected young rats with 1) saline (control), 2) STZ (120 mg/kg) or 3) STZ and insulin (STZ-INS; to maintain euglycemia).

View Article and Find Full Text PDF