Publications by authors named "Adam Mepham"

The spread of antibiotic-resistant bacteria poses a global threat to public health. Conventional bacterial detection and identification methods often require pre-enrichment and/or sample preprocessing and purification steps that can prolong diagnosis by days. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most widespread antibiotic-resistant bacteria and is the leading cause of hospital-acquired infections.

View Article and Find Full Text PDF

Integrated devices for automated nucleic acid testing (NAT) are critical for infectious disease diagnosis to be performed outside of centralized laboratories. The gold standard methods for NAT are enzymatic amplification methods like the polymerase chain reaction that typically require expensive equipment and highly-trained personnel, limiting use in low-resource settings. A low-cost, integrated, rapid, portable and user-friendly point-of-care (POC) nucleic acid diagnostic device will improve the accessibility of NAT.

View Article and Find Full Text PDF

Conversion of CO to CO powered by renewable electricity not only reduces CO pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures.

View Article and Find Full Text PDF

Electrochemical reduction of carbon dioxide (CO) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO surrounding typical CO reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts.

View Article and Find Full Text PDF

Cancer cells, and in particular those found circulating in blood, can have widely varying phenotypes and molecular profiles despite a common origin. New methods are needed that can deconvolute the heterogeneity of cancer cells and sort small numbers of cells to aid in the characterization of cancer cell subpopulations. Here, we describe a new molecular approach to capturing cancer cells that isolates subpopulations using two-dimensional sorting.

View Article and Find Full Text PDF

Over the last decade, significant progress has been made towards the development of approaches that enable the capture of rare circulating tumor cells (CTCs) from the blood of cancer patients, a critical capability for noninvasive tumor profiling. These advances have leveraged new insights in materials chemistry and microfluidics and allowed the capture and enumeration of CTCs with unprecedented sensitivity. However, it has become increasingly clear that simply capturing and counting tumor cells launched into the bloodstream may not provide the information needed to advance our understanding of the biology of these rare cells, or to allow us to better exploit them in medicine.

View Article and Find Full Text PDF

Unlabelled: Circulating tumor cells (CTCs) can be used as markers for the detection, characterization, and targeted therapeutic management of cancer. We recently developed a nanoparticle-mediated approach for capture and sorting of CTCs based on their specific epithelial phenotype. In the current study, we investigate the phenotypic transition of tumor cells in an animal model and show the correlation of this transition with tumor progression.

View Article and Find Full Text PDF

The analysis of circulating tumor cells (CTCs) is an important capability that may lead to new approaches for cancer management. CTC capture devices developed to date isolate a bulk population of CTCs and do not differentiate subpopulations that may have varying phenotypes with different levels of clinical relevance. Here, we present a new device for CTC spatial sorting and profiling that sequesters blood-borne tumor cells with different phenotypes into discrete spatial bins.

View Article and Find Full Text PDF