Purpose: Real-time visualization of target motion using fiducial markers during radiation therapy treatment will allow for more accurate dose delivery. The purpose of this study was to optimize techniques for online fiducial marker tracking by detecting the scattered treatment beam through coded aperture imaging (CAI). Coded aperture imaging is a novel imaging technique that can allow target tracking in real time during treatment, and do so without adding any additional radiation dose, by making use of the scattered treatment beam radiation.
View Article and Find Full Text PDFPurpose: Three-dimensional in-vivo dose verification is one of the standing challenges in radiation therapy. X-ray-induced acoustic tomography has recently been proposed as an imaging method for use in in-vivo dosimetry. The aim of this study was to investigate the accuracy of reconstructing three-dimensional (3D) absolute dose using x-ray-induced acoustic tomography.
View Article and Find Full Text PDFPlastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt %) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however, they suffer from poor mechanical properties.
View Article and Find Full Text PDFA synthetic methodology is developed to generate boron rich aromatic small molecules based on benzene and pyrene moieties for the detection of thermal neutrons. The prepared aromatic compounds have a relatively high boron content up to 7.4 wt%, which is important for application in neutron detection as (10)B (20% of natural abundance boron) has a large neutron induced reaction cross-section.
View Article and Find Full Text PDF