This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
View Article and Find Full Text PDFThis article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
View Article and Find Full Text PDFSynaptic transmission is bioenergetically demanding, and the diverse processes underlying synaptic plasticity elevate these demands. Therefore, mitochondrial functions, including ATP synthesis and Ca handling, are likely essential for plasticity. Although axonal mitochondria have been extensively analyzed, LTP is predominantly induced postsynaptically, where mitochondria are understudied.
View Article and Find Full Text PDFObjective: Studies have addressed the potential involvement of L-12/15-lipoxygenases (LOs), a polyunsaturated fatty acid metabolizing enzyme, in experimental models of acute stroke and chronic neurodegeneration; however, none to our knowledge has explored its role in epilepsy development. Thus, this study characterizes the cell-specific expression of L-12/15 -LO in the brain and examines its contribution to epileptogenesis.
Methods: L-12/15-LO messenger RNA (mRNA) and protein expression and activity were characterized via polymerase chain reaction (PCR), immunocytochemistry and enzyme-linked immunosorbent assay (ELISA), respectively.
Missense mutations in ubiquilin 2 (UBQLN2) cause ALS with frontotemporal dementia (ALS-FTD). Animal models of ALS are useful for understanding the mechanisms of pathogenesis and for preclinical investigations. However, previous rodent models carrying UBQLN2 mutations failed to manifest any sign of motor neuron disease.
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors (SSRIs) are the primary pharmacological treatment for depression, but SSRIs are effective in only half of the patients and typically take several weeks to relieve symptoms. The NMDA receptor antagonist ketamine exerts a rapid antidepressant action, but has troubling side effects. We hypothesized that negative allosteric modulators of GABAA receptors would exert similar effects on brain activity as ketamine, but would not exert as many side effects if targeted only to GABAA receptors containing α5 subunits, which are enriched in the hippocampus and prefrontal cortex.
View Article and Find Full Text PDFDepression is a common cause of mortality and morbidity, but the biological bases of the deficits in emotional and cognitive processing remain incompletely understood. Current antidepressant therapies are effective in only some patients and act slowly. Here, we propose an excitatory synapse hypothesis of depression in which chronic stress and genetic susceptibility cause changes in the strength of subsets of glutamatergic synapses at multiple locations, including the prefrontal cortex (PFC), hippocampus, and nucleus accumbens (NAc), leading to a dysfunction of corticomesolimbic reward circuitry that underlies many of the symptoms of depression.
View Article and Find Full Text PDF