Int J Physiol Pathophysiol Pharmacol
August 2019
Although the combination of highly active antiretroviral therapy (cART) can remarkably control human immunodeficiency virus type-1 (HIV-1) replication, it fails to cure HIV/AIDS disease. It is attributed to the incapability of cART to eliminate persistent HIV-1 contained in latent reservoirs in the central nervous system (CNS) and other tissue organs. Thus, withdrawal of cART causes rebound viral replication and resurgent of HIV/AIDS.
View Article and Find Full Text PDFWernicke's encephalopathy, a common neurological disease, is caused by thiamine (vitamin B1) deficiency. Neuropathy resulting from thiamine deficiency is a hallmark of Wernicke-Korsakoff syndrome in chronic alcohol users. The underlying mechanisms of this deficiency and progression of neuropathy remain to be understood.
View Article and Find Full Text PDFEpidemiological studies showed a strong association between alcoholism and incidence of stroke, for which the underlying causative mechanisms remain to be understood. Here we found that infiltration of immune cells and deposition of cholesterol at the site of brain artery/capillary injury induced atherosclerosis in chronic alcohol (ethanol) consumption in the presence or absence of high-fat diet. Conversion of cholesterol into sharp edges of cholesterol crystals (CCs) in alcohol intake was key to activation of NLRP3 inflammasome, induction of cerebral atherosclerosis, and development of neuropathy around the atherosclerotic lesions.
View Article and Find Full Text PDFObjective: Blood-brain barrier (BBB) dysfunction caused by activation of matrix metalloproteinases (MMPs) is a pathological feature in vascular/neurological disease. We describe the mechanisms of BBB dysfunction and neuroinflammation as a result of MMP-3/9 activation and disruption of vascular endothelial growth factor (VEGF)-A/VEGFR-2 interaction, impairing effective angiogenesis.
Methods And Results: We investigate the hypothesis in human brain endothelial cells and animal model of chronic alcohol ingestion.
Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes.
View Article and Find Full Text PDFBackground: Methamphetamine (METH), an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB) function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB) to date.
View Article and Find Full Text PDFMicrovessels, the main components of the blood-brain barrier (BBB) are vulnerable to oxidative damage during alcohol-induced stress. Alcohol produces oxidative damage within the vessels and in the brain. Using our animal model of catheter implant into the common carotid artery (CCA), we trace the footprints of alcohol-induced oxidative damage and inflammatory process at the BBB and into the brain.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
January 2011
Alcohol consumption causes neurocognitive deficits, neuronal injury, and neurodegeneration. At the cellular level, alcohol abuse causes oxidative damage to mitochondria and cellular proteins and interlink with the progression of neuroinflammation and neurological disorders. We previously reported that alcohol inhibits glucose transport across the blood-brain barrier (BBB), leading to BBB dysfunction and neurodegeneration.
View Article and Find Full Text PDFPurpose: Evidence shows that alcohol intake causes oxidative neuronal injury and neurocognitive deficits that are distinct from the classical Wernicke-Korsakoff neuropathy. Our previous findings indicated that alcohol-elicited blood-brain barrier (BBB) damage leads to neuroinflammation and neuronal loss. The dynamic function of the BBB requires a constant supply and utilization of glucose.
View Article and Find Full Text PDFThe studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to mice caused an increase in inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine adduct formation in frontal cortical neurons but not in astrocytes from brains of these animals.
View Article and Find Full Text PDF