Publications by authors named "Adam M Rauwerdink"

The rigidity of the extracellular matrix and of the integrin links to the cytoskeleton regulates signaling cascades, controlling critical aspects of cancer progression including metastasis and angiogenesis. We demonstrate that the matrix stiffness can be monitored using magnetic spectroscopy of nanoparticle Brownian motion (MSB). We measured the MSB signal from nanoparticles bound to large dextran polymers.

View Article and Find Full Text PDF

The success of magnetic nanoparticle (mNP)-based diagnostic and therapeutic techniques is dependent upon how the mNP are distributed in vivo. The potential efficacy and timing of a given magnetic nanoparticle treatment or diagnostic test is largely determined by the number of nanoparticles in each tissue and microscopic compartment: e.g.

View Article and Find Full Text PDF

We characterized the initiation and evolution of the immune response against a new inducible p53-dependent model of aggressive ovarian carcinoma that recapitulates the leukocyte infiltrates and cytokine milieu of advanced human tumors. Unlike other models that initiate tumors before the development of a mature immune system, we detect measurable anti-tumor immunity from very early stages, which is driven by infiltrating dendritic cells (DCs) and prevents steady tumor growth for prolonged periods. Coinciding with a phenotypic switch in expanding DC infiltrates, tumors aggressively progress to terminal disease in a comparatively short time.

View Article and Find Full Text PDF

Purpose: The binding of nanoparticles to in vivo targets impacts their use for medical imaging, therapy, and the study of diseases and disease biomarkers. Though an array of techniques can detect binding in vitro, the search for a robust in vivo method continues. The spectral response of magnetic nanoparticles can be influenced by a variety of changes in their physical environment including viscosity and binding.

View Article and Find Full Text PDF

Distinct magnetic nanoparticle designs can have unique spectral responses to an AC magnetic field in a technique called the magnetic spectroscopy of Brownian motion (MSB). The spectra of the particles have been measured using desktop spectrometers and in vivo measurements. If multiple particle types are present in a region of interest, the unique spectral signatures allow for the simultaneous quantification of the various particles.

View Article and Find Full Text PDF

Purpose: The harmonic spectrum of magnetic nanoparticles contains valuable information about the quantity and environment of the particles. Harmonic amplitudes have been used to produce quantitative images and ratios of these amplitudes have been used to monitor changes in the particle environment. Harmonic phase angles have not yet been utilized in these pursuits.

View Article and Find Full Text PDF

The harmonics produced by the nonlinear magnetization of superparamagnetic nanoparticles have been utilized in a number of budding medical devices. Here we expand on an earlier technique for quantitatively measuring nanoparticle temperature in a purely ac field by including the presence of a static field. The ability to quantify nanoparticle temperature by tracking changes in the 4th/2nd harmonic ratio is presented and shown to achieve an accuracy of 0.

View Article and Find Full Text PDF

The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori.

View Article and Find Full Text PDF

We explore the properties of the signal from magnetic nanoparticles. The nanoparticle signal has been used to generate images in magnetic particle imaging (MPI). MPI promises to be one of the most sensitive methods of imaging small numbers magnetic nanoparticles and therefore shows promise for molecular imaging.

View Article and Find Full Text PDF