Publications by authors named "Adam Lilly"

Bioactive fatty acid-derived oxylipin molecules play key roles mediating inflammation and oxidative stress. Circulating levels of fatty acids and oxylipins are influenced by environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biology. We performed a genome-wide association study (GWAS) of 81 fatty acids and oxylipins in 11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.

View Article and Find Full Text PDF

Obesity and poverty disproportionally affect African American persons. Epigenetic mechanisms could partially explain the association between socioeconomic disadvantage and body mass index (BMI). We examined the extent to which epigenetic mechanisms mediate the effect of socioeconomic status (SES) on BMI.

View Article and Find Full Text PDF

Bioactive fatty acid-derived oxylipin molecules play key roles in mediating inflammation and oxidative stress, which underlie many chronic diseases. Circulating levels of fatty acids and oxylipins are influenced by both environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biological pathways. Thus, we performed a genome wide association study (GWAS) of n=81 fatty acids and oxylipins in n=11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.

View Article and Find Full Text PDF

Research on China's volunteerism highlights the state as a major force in mobilizing volunteer participation. Nevertheless, limited quantitative research exists documenting the extent to which Chinese volunteers are connected to the state system. Using a nationally representative dataset, the 2012 Chinese General Social Survey, this study examines how an individual's employment affiliation with state-controlled institutions influences their probability to volunteer.

View Article and Find Full Text PDF

It is common practice for psychologists to specify models with latent variables to represent concepts that are difficult to directly measure. Each latent variable needs a scale, and the most popular method of scaling as well as the default in most structural equation modeling (SEM) software uses a scaling or reference indicator. Much of the time, the choice of which indicator to use for this purpose receives little attention, and many analysts use the first indicator without considering whether there are better choices.

View Article and Find Full Text PDF

Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. Objective: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects.

View Article and Find Full Text PDF

Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (stage 1, n = 59,771) and generalized our findings in 9 additional studies (stage 2, n = 10,538).

View Article and Find Full Text PDF

Structural equation models (SEMs) are widely used to handle multiequation systems that involve latent variables, multiple indicators, and measurement error. Maximum likelihood (ML) and diagonally weighted least squares (DWLS) dominate the estimation of SEMs with continuous or categorical endogenous variables, respectively. When a model is correctly specified, ML and DWLS function well.

View Article and Find Full Text PDF

Genome-wide association studies have revolutionized our understanding of the genetic underpinnings of cardiometabolic disease. Yet, the inadequate representation of individuals of diverse ancestral backgrounds in these studies may undercut their ultimate potential for both public health and precision medicine. The goal of this review is to describe the imperativeness of studying the populations who are most affected by cardiometabolic disease, to the aim of better understanding the genetic underpinnings of the disease.

View Article and Find Full Text PDF