Advances in cryo-electron tomography (cryo-ET) have produced new opportunities to visualize the structures of dynamic macromolecules in native cellular environments. While cryo-ET can reveal structures at molecular resolution, image processing algorithms remain a bottleneck in resolving the heterogeneity of biomolecular structures in situ. Here, we introduce cryoDRGN-ET for heterogeneous reconstruction of cryo-ET subtomograms.
View Article and Find Full Text PDFMost current single-cell analysis pipelines are limited to cell embeddings and rely heavily on clustering, while lacking the ability to explicitly model interactions between different feature types. Furthermore, these methods are tailored to specific tasks, as distinct single-cell problems are formulated differently. To address these shortcomings, here we present SIMBA, a graph embedding method that jointly embeds single cells and their defining features, such as genes, chromatin-accessible regions and DNA sequences, into a common latent space.
View Article and Find Full Text PDFScience
December 2022
Despite much progress in training artificial intelligence (AI) systems to imitate human language, building agents that use language to communicate intentionally with humans in interactive environments remains a major challenge. We introduce Cicero, the first AI agent to achieve human-level performance in , a strategy game involving both cooperation and competition that emphasizes natural language negotiation and tactical coordination between seven players. Cicero integrates a language model with planning and reinforcement learning algorithms by inferring players' beliefs and intentions from its conversations and generating dialogue in pursuit of its plans.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2022
In order to reach human performance on complex visual tasks, artificial systems need to incorporate a significant amount of understanding of the world in terms of macroscopic objects, movements, forces, etc. Inspired by work on intuitive physics in infants, we propose an evaluation benchmark which diagnoses how much a given system understands about physics by testing whether it can tell apart well matched videos of possible versus impossible events constructed with a game engine. The test requires systems to compute a physical plausibility score over an entire video.
View Article and Find Full Text PDFThe evaluation of electrostatic energy for a set of point charges in a periodic lattice is a computationally expensive part of molecular dynamics simulations (and other applications) because of the long-range nature of the Coulomb interaction. A standard approach is to decompose the Coulomb potential into a near part, typically evaluated by direct summation up to a cutoff radius, and a far part, typically evaluated in Fourier space. In practice, all decomposition approaches involve approximations-such as cutting off the near-part direct sum-but it may be possible to find new decompositions with improved trade-offs between accuracy and performance.
View Article and Find Full Text PDF