Publications by authors named "Adam Lampert"

Invasive species are spreading worldwide, causing damage to ecosystems, biodiversity, agriculture, and human health. A major question is, therefore, how to distribute treatment efforts cost-effectively across space and time to prevent or slow the spread of invasive species. However, finding optimal control strategies for the complex spatial-temporal dynamics of populations is complicated and requires novel methodologies.

View Article and Find Full Text PDF

Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge.

View Article and Find Full Text PDF

The outbreak of the novel Coronavirus (COVID-19) has led countries worldwide to administer quarantine policies. However, each country or state independently decides what mobility restrictions to administer within its borders while aiming to maximize its own citizens' welfare. Since individuals travel between countries and states, the policy in one country affects the infection levels in other countries.

View Article and Find Full Text PDF

Despite efforts to prevent their establishment, many invasive species continue to spread and threaten food production, human health, and natural biodiversity. Slowing the spread of established species is often a preferred strategy; however, it is also expensive and necessitates treatment over large areas. Therefore, it is critical to examine how to distribute management efforts over space cost-effectively.

View Article and Find Full Text PDF

Background: Scarcity in supply of COVID-19 vaccines and severe international inequality in their allocation present formidable challenges. These circumstances stress the importance of identifying the conditions under which self-interested vaccine-rich countries will voluntarily donate their surplus vaccines to vaccine-poor countries.

Methods: We develop a game-theoretical approach to identify the vaccine donation strategy that is optimal for the vaccine-rich countries as a whole; and to determine whether the optimal strategy is stable (Nash equilibrium or self-enforcing agreement).

View Article and Find Full Text PDF

The volatility of an environment significantly impacts cooperative behavior. In environments where viability-threatening events occur on a shorter timescale than reproduction, it is reasonable to measure the costs and benefits of cooperation in terms of their direct effect on survival probability. Then, the number of offspring increases with lifespan.

View Article and Find Full Text PDF

Because of the profound ecological and economic impacts of many non-native insect species, early detection and eradication of newly founded, isolated populations is a high priority for preventing damages. Though successful eradication is often challenging, the effectiveness of several treatment methods/tactics is enhanced by the existence of Allee dynamics in target populations. Historically, successful eradication has often relied on the application of two or more tactics.

View Article and Find Full Text PDF

A major challenge in ecosystem management is to promote cooperation among the multiple agents that manage the ecosystem. In particular, sharing information among the agents is often essential for reaching a desirable collective treatment. However, it is unclear how the sharing of information affects the incentives of selfish agents to cooperate and contribute to the common environmental project.

View Article and Find Full Text PDF

The management of harmful species, including invasive species, pests, parasites, and diseases, is a major global challenge. Harmful species cause severe damage to ecosystems, biodiversity, agriculture, and human health. In particular, managing harmful species often requires cooperation among multiple agents, such as landowners, agencies, and countries.

View Article and Find Full Text PDF

A major challenge in environmental policymaking is determining whether and how fast our society should adopt sustainable management methods. These decisions may have long-lasting effects on the environment, and therefore, they depend critically on the discount factor, which determines the relative values given to future environmental goods compared to present ones. The discount factor has been a major focus of debate in recent decades, and nevertheless, the potential effect of the environment and its management on the discount factor has been largely ignored.

View Article and Find Full Text PDF

A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition.

View Article and Find Full Text PDF

Explaining the coexistence and distribution of species in time and space remains a fundamental challenge. While species coexistence depends on both local and regional mechanisms, it is sometimes unclear which role each mechanism takes in a given ecosystem. Consequently, it is very hard to predict the response of the ecosystem to environmental changes.

View Article and Find Full Text PDF

Resolving conflicting ecosystem management goals-such as maintaining fisheries while conserving marine species or harvesting timber while preserving habitat-is a widely recognized challenge. Even more challenging may be conflicts between two conservation goals that are typically considered complementary. Here, we model a case where eradication of an invasive plant, hybrid Spartina, threatens the recovery of an endangered bird that uses Spartina for nesting.

View Article and Find Full Text PDF

A variety of ecological systems around the world have been damaged in recent years, either by natural factors such as invasive species, storms and global change or by direct human activities such as overfishing and water pollution. Restoration of these systems to provide ecosystem services entails significant economic benefits. Thus, choosing how and when to restore in an optimal fashion is important, but has not been well studied.

View Article and Find Full Text PDF

Critical population phase transitions, in which a persistent population becomes extinction-prone owing to environmental changes, are fundamentally important in ecology, and their determination is a key factor in successful ecosystem management. To persist, a species requires a suitable environment in a sufficiently large spatial region. However, even if this condition is met, the species does not necessarily persist, owing to stochastic fluctuations.

View Article and Find Full Text PDF

Background: Evolutionary arms race plays a major role in shaping biological diversity. In microbial systems, competition often involves chemical warfare and the production of bacteriocins, narrow-spectrum toxins aimed at killing closely related strains by forming pores in their target's membrane or by degrading the target's RNA or DNA. Although many empirical and theoretical studies describe competitive exclusion of bacteriocin-sensitive strains by producers of bacteriocins, the dynamics among producers are largely unknown.

View Article and Find Full Text PDF

The size of an organism reflects its metabolic rate, growth rate, mortality, and other important characteristics; therefore, the distribution of body size is a major determinant of ecosystem structure and function. Body-size distributions often are multimodal, with several peaks of abundant sizes, and previous studies suggest that this is the outcome of niche separation: species from distinct peaks avoid competition by consuming different resources, which results in selection of different sizes in each niche. However, this cannot explain many ecosystems with several peaks competing over the same niche.

View Article and Find Full Text PDF

To overcome stress, such as resource limitation, an organism often needs to successfully mediate competition with other members of its own species. This may favor the evolution of defective traits that are harmful to the species population as a whole, and that may lead to its dilution or even to its extinction (the tragedy of the commons). Here, we show that this phenomenon can be circumvented by cooperation plasticity, in which an individual decides, based on environmental conditions, whether to cooperate or to defect.

View Article and Find Full Text PDF

Mutation rate (MR) is a crucial determinant of the evolutionary process. Optimal MR may enable efficient evolutionary searching and therefore increase the fitness of the population over time. Nevertheless, individuals may favor MRs that are far from being optimal for the whole population.

View Article and Find Full Text PDF