The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration.
View Article and Find Full Text PDFThe hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration.
View Article and Find Full Text PDFThe assembly of the autophagy initiation machinery nucleates autophagosome biogenesis, including in the PINK1- and Parkin-dependent mitophagy pathway implicated in Parkinson's disease. The structural interaction between the sole transmembrane autophagy protein, autophagy-related protein 9A (ATG9A), and components of the Unc-51-like autophagy activating kinase (ULK1) complex is one of the major missing links needed to complete a structural map of autophagy initiation. We determined the 2.
View Article and Find Full Text PDFThe mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and catabolism in response to nutrients through phosphorylation of key substrates. The tumor suppressor folliculin (FLCN) is a RagC/D guanosine triphosphatase (GTPase)-activating protein (GAP) that regulates mTORC1 phosphorylation of MiT-TFE transcription factors, controlling lysosome biogenesis and autophagy. We determined the cryo-electron microscopy structure of the active FLCN complex (AFC) containing FLCN, FNIP2, the N-terminal tail of SLC38A9, the RagA:RagC GTPase dimer, and the Ragulator scaffold.
View Article and Find Full Text PDFThe endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol ("reverse topology"), but they can also be directed toward the cytosol ("normal topology"). The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing.
View Article and Find Full Text PDFSelective autophagy of damaged mitochondria, protein aggregates, and other cargoes is essential for health. Cargo initiates phagophore biogenesis, which entails the conjugation of LC3 to phosphatidylethanolamine. Current models suggest that clustered ubiquitin chains on a cargo trigger a cascade from autophagic cargo receptors through the core complexes ULK1 and class III phosphatidylinositol 3-kinase complex I, WIPI2, and the ATG7, ATG3, and ATG12ATG5-ATG16L1 machinery of LC3 lipidation.
View Article and Find Full Text PDFThe selective autophagy pathways of xenophagy and mitophagy are initiated when the adaptor NDP52 recruits the ULK1 complex to autophagic cargo. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was used to map the membrane and NDP52 binding sites of the ULK1 complex to unique regions of the coiled coil of the FIP200 subunit. Electron microscopy of the full-length ULK1 complex shows that the FIP200 coiled coil projects away from the crescent-shaped FIP200 N-terminal domain dimer.
View Article and Find Full Text PDFThe autophagy-initiating human ULK complex consists of the kinase ULK1/2, FIP200, ATG13, and ATG101. Hydrogen-deuterium exchange mass spectrometry was used to map their mutual interactions. The N-terminal 640 residues (NTD) of FIP200 interact with the C-terminal IDR of ATG13.
View Article and Find Full Text PDFThe tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagA:RagC GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.
View Article and Find Full Text PDFSoluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71° rotation of the heme-binding β H-NOX and PAS domains.
View Article and Find Full Text PDFAllosteric regulation of methylmalonyl-CoA mutase (MCM) by the G-protein chaperone CblA is transduced via three "switch" elements that gate the movement of the B cofactor to and from MCM. Mutations in CblA and MCM cause hereditary methylmalonic aciduria. Unlike the bacterial orthologs used previously to model disease-causing mutations, human MCM and CblA exhibit a complex pattern of regulation that involves interconverting oligomers, which are differentially sensitive to the presence of GTP versus GDP.
View Article and Find Full Text PDFThe cytochrome P450 enzyme CYP102A1 from is a highly efficient hydroxylase of fatty acids, and there is a significant interest in using CYP102A1 for biotechnological applications. Here, we used size-exclusion chromatography-multiangle light scattering (SEC-MALS) analysis and negative-stain EM to investigate the molecular architecture of CYP102A1. The SEC-MALS analysis yielded a homogeneous peak with an average molecular mass of 235 ± 5 kDa, consistent with homodimeric CYP102A1.
View Article and Find Full Text PDFG-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor.
View Article and Find Full Text PDFHsp100 polypeptide translocases are conserved members of the AAA+ family (adenosine triphosphatases associated with diverse cellular activities) that maintain proteostasis by unfolding aberrant and toxic proteins for refolding or proteolytic degradation. The Hsp104 disaggregase from solubilizes stress-induced amorphous aggregates and amyloids. The structural basis for substrate recognition and translocation is unknown.
View Article and Find Full Text PDFHsp104, a conserved AAA+ protein disaggregase, promotes survival during cellular stress. Hsp104 remodels amyloids, thereby supporting prion propagation, and disassembles toxic oligomers associated with neurodegenerative diseases. However, a definitive structural mechanism for its disaggregase activity has remained elusive.
View Article and Find Full Text PDFThe data here consists of time-dependent experimental parameters from chemical and biophysical methods used to characterize Aβ monomeric reactants as well as soluble oligomer and amyloid fibril products from a slow (3-4 week) assembly reaction under biologically-relevant solvent conditions. The data of this reaction are both of a qualitative and quantitative nature, including gel images from chemical cross-linking and Western blots, fractional solubility, thioflavin T binding, size exclusion chromatograms, transmission electron microscopy images, circular dichroism spectra, and fluorescence resonance energy transfer efficiencies of donor-acceptor pair labels in the Aβ chain. This data enables future efforts to produce the initial monomer and eventual soluble oligomer and amyloid fibril states by providing reference benchmarks of these states pertaining to physical properties (solubility), ligand-binding (thioflavin T binding), mesoscopic structure (electron microscopy, size exclusion chromatography, cross-linking products, SDS and native gels) and molecular structure (circular dichroism, FRET donor-acceptor distance).
View Article and Find Full Text PDFSurface plasmon resonance was used to investigate the kinetics, affinity, and specificity of binding between anti-Aβ (beta-amyloid) IgG antibodies and oligomeric Aβ. Two factors were needed to accurately characterize the IgG binding kinetics. First, a bivalent model was necessary to properly fit the kinetic association and dissociation sensograms.
View Article and Find Full Text PDFNitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis.
View Article and Find Full Text PDF