Publications by authors named "Adam L Tenderholt"

The multiredox reactivity of bioinorganic cofactors is often coupled to proton transfers. Here we investigate the structural, thermochemical, and electronic structure of ruthenium-amino/amido complexes with multi- proton-coupled electron transfer reactivity. The bis(amino)ruthenium(II) and bis(amido)ruthenium(IV) complexes [Ru(bpy)(en*)] ( ) and [Ru(bpy)(en*-H)] ( ) interconvert reversibly with the transfer of 2e/2H (bpy = 2,2'-bipyridine, en* = 2,3-diamino-2,3-dimethylbutane).

View Article and Find Full Text PDF

Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate.

View Article and Find Full Text PDF

Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh(2)NH(2), -Py, and -CH(2)Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH(2), HOAr-Py, and HOAr-CH(2)Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene.

View Article and Find Full Text PDF

Reaction coordinates for oxo transfer from the substrates Me(3)NO, Me(2)SO, and Me(3)PO to the biologically relevant Mo(IV) bis-dithiolene complex [Mo(OMe)(mdt)(2)](-) where mdt = 1,2-dimethyl-ethene-1,2-dithiolate(2-), and from Me(2)SO to the analogous W(IV) complex, have been calculated using density functional theory. In each case, the reaction first proceeds through a transition state (TS1) to an intermediate with substrate weakly bound, followed by a second transition state (TS2) around which breaking of the substrate X-O bond begins. By analyzing the energetic contributions to each barrier, it is shown that the nature of the substrate and metal determines which transition state controls the rate-determining step of the reaction.

View Article and Find Full Text PDF

The oxidation of three phenols, which contain an intramolecular hydrogen bond to a pendent pyridine or amine group, has been shown, in a previous experimental study, to undergo concerted proton-electron transfer (CPET). In this reaction, the electron is transferred to an outer-sphere oxidant, and the proton is transferred from the oxygen to nitrogen atom. In the present study, this reaction is studied computationally using a version of Hammes-Schiffer's multistate continuum theory where CPET is formulated as a transmission frequency between neutral and cation vibrational-electronic states.

View Article and Find Full Text PDF

Background: The Blue Obelisk movement was established in 2005 as a response to the lack of Open Data, Open Standards and Open Source (ODOSOS) in chemistry. It aims to make it easier to carry out chemistry research by promoting interoperability between chemistry software, encouraging cooperation between Open Source developers, and developing community resources and Open Standards.

Results: This contribution looks back on the work carried out by the Blue Obelisk in the past 5 years and surveys progress and remaining challenges in the areas of Open Data, Open Standards, and Open Source in chemistry.

View Article and Find Full Text PDF

Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two Mo bis-dithiolene complexes, [Mo(OSi)(bdt)(2)](1-) and [MoO(OSi)(bdt)(2)](1-), where OSi = [OSiPh(2)(t)Bu](1-) and bdt = benzene-1,2-dithiolate(2-), that model the Mo(IV) and Mo(VI)=O states of the DMSO reductase family of molybdenum enzymes. These results show that the Mo(IV) complex undergoes metal-based oxidation unlike Mo tris-dithiolene complexes, indicating that the dithiolene ligands are behaving innocently. Experimentally validated calculations have been extended to model the oxo transfer reaction coordinate using dimethylsulfoxide (DMSO) as a substrate.

View Article and Find Full Text PDF

Fe=O biomimetic model complexes have been characterized using nuclear vibrational resonance spectroscopy (NRVS). Features and systematic trends in the low energy region reflect equatorial and axial bonding differences that relate to differences in reactivity. These trends have been computationally extended to predict the spectra of putative Fe=O intermediates in non-heme iron enzymes and show the utility of the NRVS method for structural insight.

View Article and Find Full Text PDF

Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of a series of Mo tris(dithiolene) complexes, [Mo(mdt)3](z) (where mdt = 1,2-dimethylethene-1,2-dithiolate(2-) and z = 2-, 1-, 0), with near trigonal-prismatic geometries (D3h symmetry). These results show that the formally Mo(IV), Mo(V), and Mo(VI) complexes actually have a (dz(2))(2) configuration, that is, remain effectively Mo(IV) despite oxidation. Comparisons with the XAS data of another set of Mo tris(dithiolene) complexes, [Mo(tbbdt)3](z) (where tbbdt = 3,5-ditert-butylbenzene-1,2-dithiolate(2-) and z = 1-, 0), show that both neutral complexes, [Mo(mdt)3] and [Mo(tbbdt)3], have similar electronic structures while the monoanions do not.

View Article and Find Full Text PDF

There are now a wide variety of packages for electronic structure calculations, each of which differs in the algorithms implemented and the output format. Many computational chemistry algorithms are only available to users of a particular package despite being generally applicable to the results of calculations by any package. Here we present cclib, a platform for the development of package-independent computational chemistry algorithms.

View Article and Find Full Text PDF

Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [Mo(V)O(bdt)(2)](-) and [W(V)O(bdt)(2)](-), where bdt=benzene-1,2-dithiolate(2-), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and MO bond strengths, are different for these complexes due to relativistic effects in the W sites.

View Article and Find Full Text PDF

Zinc binding to the two Cys(4) sites present in the DNA-binding domain (DBD) of nuclear hormone receptor proteins is required for proper folding of the domain and for protein activity. By utilizing Co(2+) as a spectroscopic probe, we have characterized the metal-binding properties of the two Cys(4) structural zinc-binding sites found in the DBD of human estrogen receptor alpha (hERalpha-DBD) and rat glucocorticoid receptor (GR-DBD). The binding affinity of Co(2+) to the two proteins was determined relative to the binding affinity of Co(2+) to the zinc finger consensus peptide, CP-1.

View Article and Find Full Text PDF