Publications by authors named "Adam L MacLean"

During development and cancer metastasis, cells transition reversibly from epithelial to mesenchymal via intermediate cell states during epithelial-mesenchymal transition (EMT). EMT is controlled by gene regulatory networks (GRNs) and can be described by a three-node GRN that permits tristable EMT landscapes. In this GRN, multiple inputs regulate the transcription factor ZEB that induces EMT.

View Article and Find Full Text PDF

Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis.

View Article and Find Full Text PDF

Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy.

View Article and Find Full Text PDF

In animal models, deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange syndrome, the most common cause of which is haploinsufficiency. Previous studies in mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA sequencing on wild-type and mouse embryos at gastrulation and early cardiac crescent stages.

View Article and Find Full Text PDF

Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis.

View Article and Find Full Text PDF

Unlabelled: In animal models, -deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange Syndrome (CdLS), the most common cause of which is -haploinsufficiency. Previous studies in mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA-sequencing on wildtype (WT) and mouse embryos at gastrulation and early cardiac crescent stages.

View Article and Find Full Text PDF

Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control.

View Article and Find Full Text PDF

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on enhancing Bayesian parameter inference methods for single-cell genomic technologies, specifically looking at gene expression and calcium (Ca) dynamics in individual cells.
  • - By implementing transfer learning, the approach leverages information from one cell to improve the inference for subsequent cells, which speeds up the analysis processes and allows for efficient fitting of a dynamical model across many cells.
  • - Results indicate that ordering cells by their gene expression similarities helps in identifying distinct Ca dynamic profiles and their associated marker genes, revealing complex interactions between cell heterogeneity in both intracellular and intercellular environments.
View Article and Find Full Text PDF

Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control.

View Article and Find Full Text PDF

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages.

View Article and Find Full Text PDF

Inference of gene regulatory networks (GRNs) can reveal cell state transitions from single-cell genomics data. However, obstacles to temporal inference from snapshot data are difficult to overcome. Single-nuclei multiomics data offer means to bridge this gap and derive temporal information from snapshot data using joint measurements of gene expression and chromatin accessibility in the same single cells.

View Article and Find Full Text PDF

Major computational challenges exist in relation to the collection, curation, processing and analysis of large genomic and imaging datasets, as well as the simulation of larger and more realistic models in systems biology. Here we discuss how a relative newcomer among programming languages-Julia-is poised to meet the current and emerging demands in the computational biosciences and beyond. Speed, flexibility, a thriving package ecosystem and readability are major factors that make high-performance computing and data analysis available to an unprecedented degree.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSC) play a prominent role in the tumor microenvironment. A quantitative understanding of the tumor-MDSC interactions that influence disease progression is critical, and currently lacking. We developed a mathematical model of metastatic growth and progression in immune-rich tumor microenvironments.

View Article and Find Full Text PDF

Kong et al. present Capybara, a computational method to identify cell states from single-cell gene expression data. Notably, Capybara can identify intermediate cell states and cell state transitions, offering biologists new means with which to interrogate the states and fates of cells.

View Article and Find Full Text PDF

Increasing evidence links metabolism, protein synthesis, and growth signaling to impairments in the function of hematopoietic stem and progenitor cells (HSPCs) during aging. The Lin28b/Hmga2 pathway controls tissue development, and the postnatal downregulation of this pathway limits the self-renewal of adult vs fetal hematopoietic stem cells (HSCs). Igf2bp2 is an RNA binding protein downstream of Lin28b/Hmga2, which regulates messenger RNA stability and translation.

View Article and Find Full Text PDF

Neural crest (NC) cells migrate throughout vertebrate embryos to give rise to a huge variety of cell types, but when and where lineages emerge and their regulation remain unclear. We have performed single-cell RNA sequencing (RNA-seq) of cranial NC cells from the first pharyngeal arch in zebrafish over several stages during migration. Computational analysis combining pseudotime and real-time data reveals that these NC cells first adopt a transitional state, becoming specified mid-migration, with the first lineage decisions being skeletal and pigment, followed by neural and glial progenitors.

View Article and Find Full Text PDF

Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account.

View Article and Find Full Text PDF

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host.

View Article and Find Full Text PDF

During progression from carcinoma in situ to an invasive tumor, the immune system is engaged in complex sets of interactions with various tumor cells. Tumor cell plasticity alters disease trajectories via epithelial-to-mesenchymal transition (EMT). Several of the same pathways that regulate EMT are involved in tumor-immune interactions, yet little is known about the mechanisms and consequences of crosstalk between these regulatory processes.

View Article and Find Full Text PDF