Understanding how an organism's phenotypic traits are conditioned by genetic and environmental variation is a central goal of biology. Root systems are one of the most important but poorly understood aspects of plants, largely due to the three-dimensional (3D), dynamic, and multiscale phenotyping challenge they pose. A critical gap in our knowledge is how root systems build in complexity from a single primary root to a network of thousands of roots that collectively compete for ephemeral, heterogeneous soil resources.
View Article and Find Full Text PDFRoots remain an underexplored frontier in plant genetics despite their well-known influence on plant development, agricultural performance and competition in the wild. Visualizing and measuring root structures and their growth is vastly more difficult than characterizing aboveground parts of the plant and is often simply avoided. The majority of research on maize root systems has focused on their anatomy, physiology, development and soil interaction, but much less is known about the genetics that control quantitative traits.
View Article and Find Full Text PDFCell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants.
View Article and Find Full Text PDFRoot systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mechanistic understanding of root growth and function will be important for future agricultural gains.
View Article and Find Full Text PDFTransformation of elite switchgrass (Panicum virgatum L.) genotypes would facilitate the characterization of genes related to cell wall recalcitrance to saccharification. However, transformation of explants from switchgrass plants has remained difficult.
View Article and Find Full Text PDF