Antibodies and antibody conjugates are essential components of life science research, but their inherent instability necessitates cold storage or lyophilization, posing logistical and sustainability challenges. Capillary-mediated vitrification has shown promise as a tool for improving biomolecule stability. In this study, we assess the feasibility of shipping and storing CMV-stabilized antibody reagents at ambient temperature using a purified rabbit polyclonal as a model system.
View Article and Find Full Text PDFEfruxifermin (EFX) is a homodimeric human IgG Fc-FGF21 fusion protein undergoing investigation for treatment of liver fibrosis due to nonalcoholic steatohepatitis (NASH), a prevalent and serious metabolic disease for which there is no approved treatment. Biological activity of FGF21 requires its intact C-terminus, which enables binding to its obligate co-receptor β-Klotho on the surface of target cells. This interaction is a prerequisite for FGF21 signal transduction through its canonical FGF receptors: FGFR1c, 2c, and 3c.
View Article and Find Full Text PDFToday the evaluation of unwanted immunogenicity is a key component in the clinical safety evaluation of new biotherapeutic drugs and macromolecular delivery strategies. However, the evolving structural complexity in contemporary biotherapeutics creates a need for on-going innovation in assay designs for reliable detection of anti-drug antibodies, especially for biotherapeutics that may not be well-suited for testing by a bridging assay. We, therefore, initiated systematic optimization of the direct binding assay to adapt it for routine use in regulatory-compliant assays of serum anti-drug antibodies.
View Article and Find Full Text PDFThe synthesis of bis(N1-phenyl-5-hydroxypyrazol-3-yl)pyridines ("L") is described, and these are silylated to achieve analogues ("SiL") without the variable of the hydroxyl proton mobility. One hydroxyl example is characterized in its bis-pincer iron(II) complex, which shows every OH proton involved in hydrogen bonding. The steric bulk of the silylated N-phenyl-substituted ligands allows the synthesis and characterization of paramagnetic (SiL)FeCl complexes, and one of these is reduced, under CO, to give the diamagnetic (SiL)Fe(CO) species.
View Article and Find Full Text PDF