Publications by authors named "Adam K Puszkarz"

This study presents a new approach to developing protective material structures for personal protective equipment (PPE), and in particular for protective gloves, with the use of ultrasonic and contact welding processes. The goal was to assess the quality of joints (welds) obtained between a synthetic polyamide knitted fabric (PA) and selected polymers (PLA, ABS, PET-G) in the developed materials using X-Ray microtomography (micro-CT). Quantitative and qualitative analyses were performed to determine the joint area produced by the selected welding methods for the examined materials.

View Article and Find Full Text PDF

This study evaluated the bone-to-implant contact (BIC) of various surface-treated dental implants using high-resolution micro-CT in rabbit bone, focusing on the effects of different treatments on osseointegration and implant stability before and after bone demineralization. Six male New Zealand White rabbits were used. Four implant types were tested: machined surface with anodizing, only etching, sandblasting with AlO + etching, and sandblasting with TiO + etching.

View Article and Find Full Text PDF

The article presents the results of research on the impact of the use of an original, innovative method of deposition of Parylene C on the functional properties of fabrics with various potential applications (e.g., thermal and chemical protective clothing, packaging, covers and others).

View Article and Find Full Text PDF

Electro-conductive fabrics are key materials for designing and developing wearable smart textiles. The properties of textile materials depend on the production method, the technique which leads to high conductivity, and the structure. The aim of the research work was to determine the factors affecting the electrical conductivity of woven fabrics and elucidate the mechanism of electric current conduction through this complex, aperiodic textile material.

View Article and Find Full Text PDF

This study aimed to evaluate internal tooth-filling interfaces of composite fillings made using universal adhesives using micro-computed tomography (µCT). Sixty class V cavities were randomly assigned into six groups: Peak Universal etch and rinse (PER), Peak Universal self-etch (PSE), Adhese Universal etch and rinse (AER), and Adhese Universal self-etch (ASE). Two further adhesives considered gold standards were used as control groups: OptiBond FL (OER) for the etch and rinse technique and Clearfil SE for the self-etch technique (CSE).

View Article and Find Full Text PDF

This article presents studies on the evaluation of the impact of surface modification of cotton, viscose, and polyester fabrics using three techniques (flocking, layer by layer, and screen printing) with materials with electrically conductive properties on their structural, biophysical, and conductive properties. Each tested fabric is characterized by specific biophysical properties. which can be disturbed by various modification methods, therefore, the following tests were carried out in the article: optical microscopy, micro-computed tomography, guarded perspiration heating plate, air permeability, sorption and electrical conductivity tester.

View Article and Find Full Text PDF

The application of biobased and biodegradable polymers, such as polylactide (PLA), in fused deposition modeling (FDM) 3D-printing technology creates a new prospect for rapid prototyping and other applications in the context of ecology. The popularity of the FDM method and its significance in material engineering not only creates new prospects for the development of technical sciences on an industrial scale, but also introduces new technologies into households. In this study, the kinetics of the hydrolytic degradation of samples obtained by the FDM method from commercially available PLA filaments under a thermally accelerated regime were analyzed.

View Article and Find Full Text PDF

The assessment of microgaps at the implant-abutment interface is an important factor that may influence clinical success. Thus, the aim of this study was to evaluate the size of microgaps between prefabricated and customised abutments (Astra Tech, Dentsply, York, PA, USA; Apollo Implants Components, Pabianice, Poland) mounted on a standard implant. The measurement of the microgap was performed using micro-computed tomography (MCT).

View Article and Find Full Text PDF

The article presents the continuation of the research on modification of fibrous carriers based on poly(lactic acid) using the electrophoretic deposition (EPD) method by the two types of biocompatible polymers-sodium hyaluronate and sodium alginate. Such modified nonwovens, differing in the structural parameters due to different manufacturing methods, could be potentially used in different biomedical applications. The results of the analysis indicate that the EPD process significantly changes the structural characteristics of the carrier in terms of thickness and porosity, which not always can be beneficial in terms of the final application.

View Article and Find Full Text PDF

The evaluation of the porosities within the interface of root canals obturated with endodontics materials is extremely important for the long-term success of endodontic treatments. The aim of this study was to compare initial and long-term volume of pores (total, open, closed) and porosity (total, regional) of three bioactive endodontic sealers: GuttaFlow Bioseal, Total Fill BC Sealer, and BioRoot RCS. Root canals were obturated with three “bioactive” sealers using the single-cone technique.

View Article and Find Full Text PDF

This paper explores the modeling of physical phenomena that occur in clothing that affect the safety and biophysical comfort of the user. Three-dimensional models of textile assemblies with complex morphology used in firefighters' multilayer protective clothing were designed in a CAD environment. The main goal of the research was to design and experimentally verify (by thermography) the models in terms of simulations when the heat transfer occurs through them in selected ambient conditions using the finite volume method.

View Article and Find Full Text PDF

The article presents research on ergonomics, biophysical comfort and safety of protective clothing. The resistance of the structural, thermal and mechanical properties of five fabrics (CBXS400, GG200T, Twaron CT736, Dyneema HB26 and T1790C), differing in geometry and raw material composition used in space suits, to dangerous ionizing radiation (β and γ) occurring in space was tested. For both types of radiation, four identical one-time doses in the range of 25-100 kGy were used.

View Article and Find Full Text PDF

This article presents research on the assessment of the impact of surface modification of cotton and polyester fabrics using four techniques (flocking, layer by layer, screen printing and thermal-transfer printing) on their structural, mechanical, biophysical, and sensory properties. Depending on geometry and raw materials of the fabrics, the clothing made of them it is characterized by certain biophysical properties which are intended to protect the human body against external factors, but also against excessive sweating and overheating or cooling down. The aforementioned properties of the modified textiles were determined with: optical microscopy, microcomputed tomography, a tensile testing machine, sweating guarded-hotplate, air permeability tester, and the Kawabata evaluation system.

View Article and Find Full Text PDF

Hyaluronate and alginate are non-toxic and biocompatible polymers, which can be used for surface modification and functionalization of many kinds of materials. Electrophoretic deposition (EPD) has several advantages, including its versatility, simplicity, and ability to coat substrates with complex shapes, and is used for the creation of antimicrobial or hydrophobic coatings on metallic biomaterials, among other applications. However, its utilization for applying biopolymer layers on textiles is very limited due to the more complex structure and spatial characteristics of fibrous materials.

View Article and Find Full Text PDF

This article presents research on ergonomics and physiological comfort of protective clothing. Biophysical properties of selected three-layer textile assemblies that differ in geometry and raw material composition for the production of types of mummy sleeping bags for premature babies were investigated. The tests included measurements of air permeability, thermal resistance and water vapor resistance (both by means of human skin model), thermal insulation, and water vapor resistance (both using newborn manikin).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to compare the shaping ability of three endodontic files (ProTaper Next, Hyflex CM, and V-Taper 2H) in mandibular molars using micro-computed tomography (MCT).
  • No significant differences were found between the file systems in increasing canal volume or debris accumulation, though V-Taper 2H had the least untouched surface area.
  • Overall, all three systems demonstrated similar effectiveness, but further research is suggested to confirm these results.
View Article and Find Full Text PDF