Publications by authors named "Adam K Pack"

Glia are increasingly appreciated as active participants in central neural processing via calcium waves, electrical coupling, and even synaptic-like release of "neuro"-transmitters. In some sensory organs (e.g.

View Article and Find Full Text PDF

Pacinian corpuscles (PCs) are tactile receptors composed of a nerve ending (neurite) that is encapsulated by layers of lamellar cells. PCs are classified as primary mechanoreceptors because there is no synapse between the transductive membrane and the site of action-potential generation. These touch receptors respond in a rapidly adapting manner to sustained pressure (indentation or displacement), which until now was believed to be attributable solely to the mechanical properties of the capsule.

View Article and Find Full Text PDF

Pacinian corpuscles (PCs) in cat mesentery have been studied extensively to help determine the structural and functional bases of tactile mechanotransduction. Although we, like many other investigators, have found that the mesenteric receptors are anatomically very similar to those found in mammalian skin, few physiological characteristics of the mesenteric PCs and those of the skin have been compared. Action-potential rate-amplitude and frequency characteristics (10 Hz-1 KHz), as well as interval (IH) and peri-stimulus-time (PSTH) histograms in response to sinusoidal displacements were obtained from nerve fibers innervating mesenteric PCs and from PC fibers innervating cat glabrous skin.

View Article and Find Full Text PDF

The Merkel cell-neurite complex is considered to be one class of mechanoreceptors in the skin. Merkel cells are innervated by slowly adapting type I (SAI) tactile nerve fibers. In this paper, the detailed distribution of Merkel cells is studied by immunohistochemical labeling of the monkey (Macaca fascicularis) digital glabrous skin.

View Article and Find Full Text PDF

The role of the capsule encasing the Pacinian corpuscle's (PC's) neurite, where mechanotransduction occurs, may be more than mechanical. The inner core of the PC's capsule consists of lamellar cells that are of Schwann-cell origin. Previously, we found both voltage-gated Na+ and K+ channels in these inner-core lamellae.

View Article and Find Full Text PDF