Alzheimer's disease is a fatal neurodegenerative malady which up to very recently did not have approved therapy modifying its course. After controversial approval of aducanumab (monoclonal antibody clearing β-amyloid plaques) by FDA for use in very early stages of disease, possibly new avenue opened for the treatment of patients. In line with this approach is search for compounds blocking aggregation into amyloid oligomers subsequently forming fibrils or compounds helping in getting rid of plaques formed by β-amyloid fibrils.
View Article and Find Full Text PDFNovel evidence is presented allowing further clarification of the mechanism of the slow-binding thymidylate synthase (TS) inhibition by N-hydroxy-dCMP (N-OH-dCMP). Spectrophotometric monitoring documented time- and temperature-, and N-OH-dCMP-dependent TS-catalyzed dihydrofolate production, accompanying the mouse enzyme incubation with N-OH-dCMP and N-methylenetetrahydrofolate, known to inactivate the enzyme by the covalent binding of the inhibitor, suggesting the demonstrated reaction to be uncoupled from the pyrimidine C(5) methylation. The latter was in accord with the hypothesis based on the previously presented structure of mouse TS (cf.
View Article and Find Full Text PDFA homo-dimeric enzyme, thymidylate synthase (TS), has been a long-standing molecular target in chemotherapy. To further elucidate properties and interactions with ligands of wild-type mouse thymidylate synthase (mTS) and its two single mutants, H190A and W103G, spectroscopic and theoretical investigations have been employed. In these mutants, histidine at position 190 and tryptophan at position 103 are substituted with alanine and glycine, respectively.
View Article and Find Full Text PDFβ-sheet breakers (BSB) constitute a class of peptide inhibitors of amyloidogenesis, a process which is a hallmark of many diseases called amyloidoses, including Alzheimer's disease (AD); however, the molecular details of their action are still not fully understood. Here we describe the results of the computational investigation of the three BSBs, iaβ6 (LPFFFD), iaβ5 (LPFFD), and iaβ6_Gly (LPFGFD), in complex with the fibril model of Aβ42 and propose the kinetically probable mechanism of their action. The mechanism involves the binding of BSB to the central hydrophobic core (CHC) region (LVFFA) of Aβ fibril and the π-stacking of its Phe rings both internally and with the Aβ fibril.
View Article and Find Full Text PDFMinus-end directed, non-processive kinesin-14 Ncd is a dimeric protein with C-terminally located motor domains (heads). Generation of the power-stroke by Ncd consists of a lever-like rotation of a long superhelical 'stalk' segment while one of the kinesin's heads is bound to the microtubule. The last ∼30 amino acids of Ncd head play a crucial but still poorly understood role in this process.
View Article and Find Full Text PDFLGMD2L is a subtype of limb-girdle muscular dystrophy (LGMD), caused by recessive mutations in ANO5, encoding anoctamin-5 (ANO5). We present the analysis of five patients with skeletal muscle weakness for whom heterozygous mutations within ANO5 were identified by whole exome sequencing (WES). Patients varied in the age of the disease onset (from 22 to 38 years) and severity of the morphological and clinical phenotypes.
View Article and Find Full Text PDFComputational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time.
View Article and Find Full Text PDFThree crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures.
View Article and Find Full Text PDFEnzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells.
View Article and Find Full Text PDFEndogenous thymidylate synthases, isolated from tissues or cultured cells of the same specific origin, have been reported to show differing slow-binding inhibition patterns. These were reflected by biphasic or linear dependence of the inactivation rate on time and accompanied by differing inhibition parameters. Considering its importance for chemotherapeutic drug resistance, the possible effect of thymidylate synthase inhibition by post-translational modification was tested, e.
View Article and Find Full Text PDFThymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results.
View Article and Find Full Text PDFThe crystal structure of mouse thymidylate synthase (mTS) in complex with substrate dUMP and antifolate inhibitor Raltitrexed is reported. The structure reveals, for the first time in the group of mammalian TS structures, a well-ordered segment of 13 N-terminal amino acids, whose ordered conformation is stabilized due to specific crystal packing. The structure consists of two homodimers, differing in conformation, one being more closed (dimer AB) and thus supporting tighter binding of ligands, and the other being more open (dimer CD) and thus allowing weaker binding of ligands.
View Article and Find Full Text PDFCrystal structure is presented of the binary complex between potassium phosphoramidate-phosphorylated recombinant C. elegans thymidylate synthase and dUMP. On each monomer a single phosphoserine residue (Ser127) was identified, instead of expected phosphohistidine.
View Article and Find Full Text PDFFibrillation of β-amyloid is recognized as a key process leading to the development of Alzheimer's disease. Small peptides called β-sheet breakers were found to inhibit the process of β-amyloid fibrillation and to dissolve amyloid fibrils in vitro, in vivo, and in cell culture studies [1,2]. The mechanism by which peptide inhibition takes place remains elusive and a detailed model needs to be established.
View Article and Find Full Text PDFJ Comput Aided Mol Des
January 2013
Tyrosine nitration is a widespread post-translational modification capable of affecting both the function and structure of the host protein molecule. Enzyme thymidylate synthase (TS), a homodimer, is a molecular target for anticancer therapy. Recently purified TS preparations, isolated from mammalian tissues, were found to be nitrated, suggesting this modification to appear endogenously in normal and tumor tissues.
View Article and Find Full Text PDFHighly purified preparations of thymidylate synthase, isolated from calf thymus, and L1210 parental and FdUrd-resistant cells, were found to be nitrated, as indicated by a specific reaction with anti-nitro-tyrosine antibodies, suggesting this modification to appear endogenously in normal and tumor tissues. Each human, mouse and Ceanorhabditis elegans recombinant TS preparation, incubated in vitro in the presence of NaHCO(3), NaNO(2) and H(2)O(2) at pH 7.5, underwent tyrosine nitration, leading to a V(max)(app) 2-fold lower following nitration of 1 (with human or C.
View Article and Find Full Text PDFThe nucleus-independent chemical shift (NICS) indices of aromaticity, calculated for four boron compounds, 4-hydroxy-5,6-dihydroborauracil, 4-hydroxyborauracil, borazine and 4-hydroxybenzoborauracil, and parent uracil, were analyzed in parallel with the NMR properties, in order to learn more about the aromaticity of those heterocyclic systems. The existence of a unique solvent-dependent aromaticity of 4-hydroxyborauracil is indicated.
View Article and Find Full Text PDFRegulation by phosphorylation is a well-established mechanism for controlling biological activity of proteins. Recently, phosphorylation of serine 124 in human thymidylate synthase (hTS) has been shown to lower the catalytic activity of the enzyme. To clarify a possible mechanism of the observed influence, molecular dynamics (MD), essential dynamics (ED) and MM-GBSA studies were undertaken.
View Article and Find Full Text PDFMolecular dynamics simulations and free energy calculations are presented, exploring previously described experimentally studied interactions of a series of 2'-fluoro-substituted dUMP/FdUMP analogues with thymidylate synthase (TS). The results show the inhibitory behaviors of 2'-F-ara-UMP, 2',2''-diF-dUMP and 2',5-diF-ara-UMP to be dependent upon the binding positions and orientations adopted by the molecules of these compounds in the active site of TS. The binding mode of 2',5-diF-ara-UMP suggests a novel role of the active site residue Trp 80, stabilizing through hydrophobic stacking the binding position of the pyrimidine ring in 2',5-diF-ara-UMP.
View Article and Find Full Text PDFThymidylate synthase (TS) is a target enzyme for a number of anticancer agents including the 5-fluorouracil metabolite, FdUMP. The present paper reports on molecular modeling studies of the effect of substitution at C(5) position in the pyrimidine ring of the TS substrate, dUMP, on the binding affinity for the enzyme. The results of molecular dynamics simulations show that the binding of C(5) analogues of dUMP to TS in the binary complexes does not undergo changes, unless a substituent with a large steric effect, such as the propyl group, is involved.
View Article and Find Full Text PDFWe applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach to evaluate relative stability of the extended (flat) and C-shaped (bent) solution conformational forms of the 5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) molecule in aqueous solution. Calculations indicated that both forms have similar free energies in aqueous solution but detailed energy components are different. The bent solution form has lower intramolecular electrostatic and van der Waals interaction energies.
View Article and Find Full Text PDFFree energy perturbation calculations have been applied to evaluate the relative free energies of binding of 2'-deoxyuridine-5'-monophosphate (dUMP) and its 2- and/or 4-thio and/or 5-fluoro analogues to the wild-type E. coli thymidylate synthase (ecTS). The results accurately reproduce experimentally measured differences in the free energy of binding of dUMP versus 5-fluoro-dUMP to thymidylate synthase.
View Article and Find Full Text PDF