L-Fucose (6-deoxy-L-galactose), a monosaccharide abundant in glycolipids and glycoproteins produced by mammalian cells, has been extensively studied for its role in intracellular biosynthesis and recycling of GDP-L-fucose for fucosylation. However, in certain mammalian species, L-fucose is efficiently broken down to pyruvate and lactate in a poorly understood metabolic pathway. In the 1970s, L-fucose dehydrogenase, an enzyme responsible for the initial step of this pathway, was partially purified from pig and rabbit livers and characterized biochemically.
View Article and Find Full Text PDFEarly studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved.
View Article and Find Full Text PDFIn view of reported discrepancies concerning antioxidant activity of dehydroepiandrosterone (DHEA), a widely used dietary supplement, the current investigation was undertaken to evaluate the antioxidant properties of DHEA in both kidney-cortex and liver of alloxan (ALX)-induced diabetic rabbits, as this diabetogenic compound exhibits the ROS-dependent action. ALX was injected to animals following 7 days of DHEA administration. Four groups of rabbits were used in the experiments: control, DHEA-treated control, diabetic and DHEA-treated diabetic.
View Article and Find Full Text PDFThe origin of chlorophyll deficiency is a mutation () in chlorophyllide oxygenase (CAO), the enzyme responsible for Chl synthesis. Regulation of Chl synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis mutants and two Arabidopsis ecotypes.
View Article and Find Full Text PDFAlthough up to 25% of glucose released into circulation in the postabsorptive state comes from renal gluconeogenesis, the regulatory mechanisms of this process are still poorly recognized, comparing to hepatic ones. The aim of the present study was to examine if hypoxia-inducible factor-1 (HIF-1) might be involved in the regulation of glucose de novo synthesis in kidneys. It was found that HK-2 cells (immortalized human kidney proximal tubules, capable of gluconeogenesis/glycogen synthesis) cultured with gluconeogenic substrates either in hypoxia (1% O) or in the presence of DMOG (an inhibitor of HIF-1α degradation) exhibited increased glycogen content.
View Article and Find Full Text PDFL-ascorbate (L-ASC) is a widely-known dietary nutrient which holds promising potential in cancer therapy when given parenterally at high doses. The anticancer effects of L-ASC involve its autoxidation and generation of HO, which is selectively toxic to malignant cells. Here we present that thioredoxin antioxidant system plays a key role in the scavenging of extracellularly-generated HO in malignant B-cells.
View Article and Find Full Text PDFProtein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including β-actin as an essential example. The evolutionary conserved methylation of β-actin H73 is catalyzed by an as yet unknown histidine -methyltransferase.
View Article and Find Full Text PDFIn view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor.
View Article and Find Full Text PDFThe aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water.
View Article and Find Full Text PDFA deficit of exogenous arginine affects growth and viability of numerous cancer cells. Although arginine deprivation-based strategy is currently undergoing clinical trials, molecular mechanisms of tumor cells' response to arginine deprivation are not yet elucidated. We have examined effects of arginine starvation on cell motility, adhesion and invasiveness as well as on actin cytoskeleton organization of human glioblastoma cells.
View Article and Find Full Text PDFEffects of equimolar concentrations of proinsulin C-peptide and insulin on glucose synthesis were studied in primary cultures of rabbit kidney-cortex tubules grown in the presence of alanine, glycerol, and octanoate. The rhodamine-labeled C-peptide entered renal tubular cells and localized in nuclei, both in the presence and absence of insulin; preincubations with the unlabeled compound inhibited internalization. C-peptide did not affect glucose formation when added alone but potentiated the inhibitory action of insulin by about 20% due to a decrease in flux through glucose-6-phosphate isomerase (GPI) and (or) glucose-6-phosphatase (G6Pase).
View Article and Find Full Text PDFAnserine (beta-alanyl-N(Pi)-methyl-L-histidine), a naturally occurring derivative of carnosine (beta-alanyl-L-histidine), is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity.
View Article and Find Full Text PDFThe lifestyle changes characteristic to the second half of the 20 century, have evoked diabetes epidemic which drastically impairs the quality of life and is the underling cause of many demises, the most of which are related to the long term complications of the disease. Clinical investigations have established that gluco- and lipotoxicity are responsible for the progression and complications of diabetes and underscored the role of postprandial hypoglycemia in the pathogenesis of the disease. In recent years the clinical investigations were exploring the possibility of stopping the progression of 'prediabetic' state to overt diabetes, which is reveled as the late stage of a metabolic disorder which begins many years earlier and has deleterious effects on health.
View Article and Find Full Text PDFTherapeutic effect of rosiglitazone has been reported to result from an improvement of insulin sensitivity and inhibition of glucose synthesis. As the latter process occurs in both liver and kidney cortex the aim of this study was to elucidate the rosiglitazone action on glucose formation in both tissues. Primary cultured cells of both liver and kidney cortex grown in defined medium were use throughout.
View Article and Find Full Text PDFSuramin is the drug of choice for the treatment of African trypanosomiasis and onchocerciasis. It is also tested for its potential use as an anticancer agent and chemosensitizer. As suramin has been reported to induce hyperglycaemia, its effect on glucose formation has been studied in isolated rabbit hepatocytes and kidney-cortex tubules.
View Article and Find Full Text PDFThe effect of melatonin on glucose metabolism in the presence and absence of insulin has been investigated in the primary cultures of renal tubules grown in a defined medium. In the absence of glucose in the medium containing 5 microg/mL of insulin and 2 mm alanine + 5 mm glycerol + 0.5 mm octanoate, 100 nm melatonin stimulated both glucose and lactate synthesis, while in the medium devoid of insulin melatonin action was negligible.
View Article and Find Full Text PDFEffects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation.
View Article and Find Full Text PDFAims: The effect of ethanol on glucose synthesis in kidney-cortex tubules of control and diabetic rabbits has been investigated.
Methods: Both freshly isolated and grown in primary cultures, kidney-cortex tubules were incubated with alanine or aspartate plus lactate or glycerol plus octanoate in the absence and presence of 100 mmol/l ethanol.
Results: In freshly isolated renal tubules incubated in the presence of alanine plus lactate or glycerol plus octanoate, and in tubules grown in primary culture in the medium containing alanine plus lactate plus octanoate alcohol, resulted in about 30% decrease in glucose formation.
The intracellular glutathione redox state and the rate of glucose formation were studied in rabbit kidney-cortex tubules. In the presence of substrates effectively utilized for glucose formation, ie, aspartate + glycerol + octanoate, alanine + glycerol + octanoate, malate, or pyruvate, the intracellular reduced glutathione/oxidized glutathione (GSH/GSSG) ratios were significantly higher than those under conditions of negligible glucose production. Changes in the intracellular GSH/GSSG ratio corresponded to those in glucose-6-phosphate content and reduced nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP(+)) ratio obtained from malate/pyruvate measurements.
View Article and Find Full Text PDFGenomic structure of two Physarum polycephalum ras family genes, Ppras2 and Pprap1, has been determined, including the upstream region of the latter. The genes are interrupted by three and four introns, respectively. The first intron of Ppras2 has the same location within the coding sequence as the first intron in another ras homolog from this organism, Ppras1 [Trzcińska-Danielewicz, J.
View Article and Find Full Text PDFThe effects of extracellular purinergic agonists and their breakdown products on glucose and glutamine synthesis in rabbit kidney-cortex tubules incubated with aspartate + glycerol or alanine + glycerol + octanoate were investigated. A rapid extracellular degradation of ATP was accompanied by an accumulation of AMP, inosine, and hypoxanthine. Extracellular ATP and its breakdown products accelerated glucose synthesis in renal tubules, while ammonium released from adenine-containing compounds enhanced glutamine synthesis and diminished the degree of gluconeogenesis stimulation.
View Article and Find Full Text PDF