Publications by authors named "Adam J Zaczek"

While theophylline has been extensively studied with multiple polymorphs discovered, there is still currently no conclusive structure for the metastable theophylline form III. In this present work, by combining more widely used techniques such as X-ray diffraction and thermogravimetric analysis with more emerging techniques like low-frequency Raman and terahertz time-domain spectroscopy, to analyze the structure and dynamics of a crystalline system, it was possible to provide further evidence that the form III structure has a theophylline monohydrate structure with the water molecules removed. Solid-state density functional theory simulations were paramount in proving that this proposed structure is correct and explain how vibrational modes within the crystal structures feature and govern polymorphic transitions and the metastable form III.

View Article and Find Full Text PDF

Quinacridone and its substituted analogs are pigments widely used in art and industry. The temperature dependence of the crystal structures of two quinacridone polymorphs (β and γ), along with the common variant 2,9-dimethylquinacridone, were investigated using powder X-ray diffraction and terahertz spectroscopy. These were then compared with solid-state density functional theory simulations of both structures and vibrations.

View Article and Find Full Text PDF

The thermosalient behavior of 1,2,4,5-tetrabromobenzene (TBB) is related to a temperature-induced polymorphic structural change. The mechanism behind the phase transition has been investigated in this work using low-frequency (10-250 cm) Raman spectroscopy and solid-state density functional theory simulations. Careful adjustments of the probing laser power permitted thermal control of the polymorph populations and enabled high-quality Raman vibrational spectra to be obtained for both the β (low temperature) and γ (high temperature) forms of TBB.

View Article and Find Full Text PDF

In ZIF-8 and its cobalt analogue ZIF-67, the imidazolate methyl-groups, which point directly into the void space, have been shown to freely rotate - even down to cryogenic temperatures. Using a combination of experimental terahertz time-domain spectroscopy, low-frequency Raman spectroscopy, and state-of-the-art ab initio simulations, the methyl-rotor dynamics in ZIF-8 and ZIF-67 are fully characterized within the context of a quantum-mechanical hindered-rotor model. The results lend insight into the fundamental origins of the experimentally observed methyl-rotor dynamics, and provide valuable insight into the nature of the weak interactions present within this important class of materials.

View Article and Find Full Text PDF

Through a combined experimental and theoretical investigation we determine that the fundamental modes of three quinacridones fall in the terahertz spectral range (1-10 THz, ∼30-300 cm). In each spectrum the terahertz resonances correspond to wagging, rocking, or twisting of the quinacridone rings, with the most intense absorption being an in-plane rocking vibration of the carbonyl oxygens. In spite of these spectral similarities, we demonstrate that terahertz measurements readily differentiate β-quinacridone, γ-quinacridone, and 2,9-dimethylquinacridone.

View Article and Find Full Text PDF