Background: Understanding the relationship between resident microbiota and disease in cultured fish represents an important and emerging area of study. Marine gill disorders in particular are considered an important challenge to Atlantic salmon (Salmo salar) aquaculture, however relatively little is known regarding the role resident gill microbiota might play in providing protection from or potentiating different gill diseases. Here, 16S rRNA sequencing was used to examine the gill microbiome alongside fish health screening in farmed Atlantic salmon.
View Article and Find Full Text PDFThe microphytobenthos that form transient biofilms are important primary producers in intertidal, depositional habitats, yet we have only a limited understanding of how they respond to the cumulative impacts of the growing range of anthropogenic stressors to which they are exposed. We know even less about how the temporal alignment of exposure - such as duration and exposure sequence - may affect the response. Estuarine biofilms were cultured in mesocosms and exposed to the herbicide glyphosate and titanium dioxide (TiO) nanoparticles in different sequences (glyphosate-first or TiO-first), as well as in the presence and absence of physical disturbance.
View Article and Find Full Text PDFEuendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths.
View Article and Find Full Text PDFUnlabelled: Recruitment of mussels is a complex process with the successful arrival of individuals hinging on the availability of suitable habitats. We examined the effects of adult mussels as settlement habitat and the degree to which the suitability of habitat they offer is species-specific by comparing the recruitment success of intertidal mussels. We hypothesised that mussel recruitment and early growth are dictated by the quality of habitat offered by conspecifics adults.
View Article and Find Full Text PDFBackground: Understanding the influence of methodology on results is an essential consideration in experimental design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing versus biopsy excision.
View Article and Find Full Text PDFIntertidal systems are complex and dynamic environments with many interacting factors influencing biochemical characteristics and microbial communities. One key factor are the actions of resident fauna, many of which are regarded as ecosystem engineers because of their bioturbation, bioirrigation and sediment stabilising activities. The purpose of this investigation was to elucidate the evolutionary implications of the ecosystem engineering process by identifying, if any, aspects that act as selection pressures upon microbial communities.
View Article and Find Full Text PDFOver the past 150 million years, the Chilean Atacama Desert has been transformed into one of the most inhospitable landscapes by geophysical changes, which makes it an ideal Mars analog that has been explored for decades. However, a heavy rainfall that occurred in the Atacama in 2017 provides a unique opportunity to study the response of resident extremophiles to rapid environmental change associated with excessive water and salt shock. Here we combine mineral/salt composition measurements, amendment cell culture experiments, and next-generation sequencing analyses to study the variations in salts and microbial communities along a latitudinal aridity gradient of the Atacama Desert.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2019
Estuarine sediments are a reservoir for faecal bacteria, such as , where they reside at greater concentrations and for longer periods than in the overlying water. Faecal bacteria in sediments do not usually pose significant risk to human health until resuspended into the water column, where transmission routes to humans are facilitated. The erosion resistance and corresponding loading of intertidal estuarine sediments was monitored in two Scottish estuaries to identify sediments that posed a risk of resuspending large amounts of .
View Article and Find Full Text PDFMicrobiological water quality monitoring of bathing waters does not account for faecal indicator organisms in sediments. Intertidal deposits are a significant reservoir of FIOs and this indicates there is a substantial risk to bathers through direct contact with the sediment, or through the resuspension of bacteria to the water column. Recent modelling efforts include sediment as a secondary source of contamination, however, little is known about the driving factors behind spatial and temporal variation in FIO abundance.
View Article and Find Full Text PDFThe extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments.
View Article and Find Full Text PDF