Understanding the nature of intermediates/active species in reactions is a major challenge in chemistry. This is because spectator species typically dominate the experimentally derived data and consequently active phase contributions are masked. Transient methods offer a means to bypass this difficulty.
View Article and Find Full Text PDFWaste PVC is scarcely recycled due to its high chlorine content and its use in composite materials, which reduces the applicability of conventional waste treatment methods, including thermal, mechanical and chemical recycling. For this reason, alternative treatment options are being developed to increase the recyclability of waste PVC. This paper focuses on one such option which utilises ionic liquids (ILs) for material separation and dehydrochlorination of PVC contained in composite materials.
View Article and Find Full Text PDFSuperbase ionic liquids (ILs) with a trihexyltetradecylphosphonium cation and a benzimidazolide ([P][Benzim]) or tetrazolide ([P][Tetz]) anion were investigated in a dual-IL system allowing the selective capture and separation of CO and SO, respectively, under realistic gas concentrations. The results show that [P][Tetz] is capable of efficiently capturing SO in preference to CO and thus, in a stepwise separation process, protects [P][Benzim] from the negative effects of the highly acidic contaminant. This results in [P][Benzim] maintaining >53% of its original CO uptake capacity after 30 absorption/desorption cycles in comparison to the 89% decrease observed after 11 cycles when [P][Tetz] was not present.
View Article and Find Full Text PDFSkin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis.
View Article and Find Full Text PDFSpiky/hollow metal nanoparticles have applications across a broad range of fields. However, the current bottom-up methods for producing spiky/hollow metal nanoparticles rely heavily on the use of strongly adsorbing surfactant molecules, which is undesirable because these passivate the product particles' surfaces. Here we report a high-yield surfactant-free synthesis of spiky hollow Au-Ag nanostars (SHAANs).
View Article and Find Full Text PDFPigment Cell Melanoma Res
March 2022
As science culture gravitates toward a more holistic inclusion of both males and females in research design, the outlining of sex differences and their respective intersections with disease physiology and pathophysiology should see reciprocal expansion. Melanoma skin cancer, for example, has observed a female advantage in incidence, mortality, and overall survival since the early 1970s. The exact biological mechanism of this trend, however, is unclear and further complicated by a layering of clinical variables such as skin phototype, age, and body mass index.
View Article and Find Full Text PDFA superbase ionic liquid (IL), trihexyltetradecylphosphonium benzimidazolide ([P][Benzim]), is investigated for the capture of CO in the presence of NO impurities. The effect of the waste gas stream contaminant on the ability of the IL to absorb simultaneously CO is demonstrated using novel measurement techniques, including a mass spectrometry breakthrough method and infrared spectroscopy. The findings show that the presence of an industrially relevant concentration of NO in a combined feed with CO has the effect of reducing the capacity of the IL to absorb CO efficiently by ∼60% after 10 absorption-desorption cycles.
View Article and Find Full Text PDFA little-studied p-type ternary oxide semiconductor, copper(I) tungstate (CuWO), was assessed by a combined theoretical/experimental approach. A detailed computational study was performed to solve the long-standing debate on the space group of CuWO, which was determined to be triclinic 1. CuWO was synthesized by a time-efficient, arc-melting method, and the crystalline reddish particulate product showed broad-band absorption in the UV-visible spectral region, thermal stability up to ∼260 °C, and cathodic photoelectrochemical activity.
View Article and Find Full Text PDFSince their conception, ionic liquids (ILs) have been investigated for an extensive range of applications including in solvent chemistry, catalysis, and electrochemistry. This is due to their designation as designer solvents, whereby the physiochemical properties of an IL can be tuned for specific applications. This has led to significant research activity both by academia and industry from the 1990s, accelerating research in many fields and leading to the filing of numerous patents.
View Article and Find Full Text PDFWater electrolysis is one of the most promising methods to produce H and O as high potential fuels. Comparing the two half-reactions, the oxygen evolution reaction (OER) is the more difficult to be optimized and still relies on expensive noble metal-based catalysts such as Ru or Ir. In this paper, we prepared nanoparticles of HfN and Hf ON and tested them for the OER for the first time.
View Article and Find Full Text PDF