Publications by authors named "Adam J Foord"

Rift Valley fever virus (RVFV) causes Rift Valley fever (RVF), resulting in morbidity and mortality in humans and ruminants. Evidence of transboundary outbreaks means that RVFV remains a threat to human health and livestock industries in countries that are free from the disease. To enhance surveillance capability, methods for detection of RVFV are required.

View Article and Find Full Text PDF

Background: Variant high pathogenicity avian influenza (HPAI) H5 viruses have recently emerged as a result of reassortment of the H5 haemagglutinin (HA) gene with different neuraminidase (NA) genes, including NA1, NA2, NA5, NA6 and NA8. These viruses form a newly proposed HA clade 2.3.

View Article and Find Full Text PDF

Flaviviruses of the Japanese encephalitis virus (JEV) serocomplex include major human and animal pathogens that have a propensity to spread and emerge in new geographic areas. Different genotypes or genetic lineages have been defined for many of these viruses, and they are distributed worldwide. Tools enabling rapid detection of new or emerging flaviviruses and differentiation of important subgroups have widespread application for arbovirus diagnosis and surveillance, and are crucial for detecting virus incursions, tracking virus emergence and for disease control.

View Article and Find Full Text PDF

Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG) to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV) and Nipah virus (NiV). Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health.

View Article and Find Full Text PDF

Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication.

View Article and Find Full Text PDF

The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses.

View Article and Find Full Text PDF

Hendra virus (HeV) is a zoonotic paramyxovirus endemic in Australian Pteropus bats (fruit bats or flying foxes). Although bats appear to be unaffected by the virus, HeV can spread from fruit bats to horses, causing severe disease. Human infection results from close contact with the blood, body fluids and tissues of infected horses.

View Article and Find Full Text PDF

Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus harbored by Australian flying foxes with sporadic spillovers directly to horses. Although the mode and critical control points of HeV spillover to horses from flying foxes, and the risk for transmission from infected horses to other horses and humans, are poorly understood, we successfully established systemic HeV disease in 3 horses exposed to Hendra virus/Australia/Horse/2008/Redlands by the oronasal route, a plausible route for natural infection. In 2 of the 3 animals, HeV RNA was detected continually in nasal swabs from as early as 2 days postexposure, indicating that systemic spread of the virus may be preceded by local viral replication in the nasal cavity or nasopharynx.

View Article and Find Full Text PDF

Differentiating foot-and-mouth disease virus (FMDV) antibodies generated during a natural infection from those due to vaccination (DIVA) is crucial for proving freedom from disease after an outbreak and allowing resumption of trade in livestock products. The World Organisation for Animal Health (OIE) recommends that FMDV vaccines are composed of inactivated virus that has been purified to remove non-structural viral proteins. Such purified vaccines primarily induce antibodies to viral structural proteins, whereas replicating virus stimulates host antibodies specific for both structural and non-structural proteins.

View Article and Find Full Text PDF

Equine influenza (EI) virus (H3N8) was identified in the Australian horse population for the first time in August 2007. The principal molecular diagnostic tool used for detection was a TaqMan real-time reverse transcription-polymerase chain reactions (RT-PCR) assay specific for the matrix (MA) gene of influenza virus type A (IVA). As this assay is not specific for EI, we developed a new EI H3-specific TaqMan assay targeting the haemagglutinin (HA) gene of all recent EI H3 strains.

View Article and Find Full Text PDF

The stamping out of animals to control a foot-and-mouth disease (FMD) outbreak results in enormous livestock losses. The implementation of vaccination strategies can reduce these losses; however it complicates the process of establishing freedom from disease following an outbreak. The availability of quality diagnostic tests to differentiate infected from vaccinated animals (DIVA) is crucial to prove freedom from disease and allow for the resumption of trade in livestock products.

View Article and Find Full Text PDF