Publications by authors named "Adam Ivora"

While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step.

View Article and Find Full Text PDF

. This paper introduces a winning solution (team ISIBrno-AIMT) to the official round of PhysioNet Challenge 2021. The main goal of the challenge was a classification of ECG recordings into 26 multi-label pathological classes with a variable number of leads (e.

View Article and Find Full Text PDF