Binary AsSe alloys from the border of a glass-forming region (65 < < 70) subjected to nanomilling in dry and dry-wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum-chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide AsSe stoichiometry, realized in glassy g-AsSe, glassy-crystalline g/c-AsSe and glassy-crystalline g/c-AsSe. From the XRPD results, the number of rhombohedral As and cubic arsenolite AsO phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution.
View Article and Find Full Text PDFA black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray-emitting region.
View Article and Find Full Text PDFLuminescence
October 2022
This study consists of the results of an investigation into the influence of the free-volume space (f ) defects on luminescence efficiency (LE) of erbium ions in Au O -doped PbO-B O -SeO (PBS) glass ceramics. Glass ceramics containing fixed concentrations of Er ions and varied concentrations of Au O were synthesized. X-ray diffraction studies indicated that the samples contained Au (SeO ) crystalline phase and nano gold metallic particles.
View Article and Find Full Text PDFThe possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsSe (0 < x < 65), subjected to dry and wet (in 0.5% PVP water solution) nanomilling. A preliminary analysis was performed within a modified two-state simple trapping model (STM), assuming slight contributions from bound positron-electron (Ps, positronium) states.
View Article and Find Full Text PDFBackground: Using positron annihilation lifetime spectroscopy (PALS), microstructural changes in commercial dental restorative composites under light-curing polymerization were identified as a modification in mixed positron/Ps trapping, where the decay of positronium (Ps; the bound state of positrons and electrons) is caused by free-volume holes mainly in the polymer matrix, and positron trapping is defined by interfacial free-volume holes in a mixed filler-polymer environment. In loosely packed composites with a filler content of <70-75%, this process was related to the conversion of Ps-to-positron trapping.
Objectives: To disclose such peculiarities in densely packed composites using the example of he commercially available acrylate-based composite ESTA-3® (ESTA Ltd.
Background: Limited literature exists evaluating the ability of a pharmacist to quickly and effectively initiate and manage dose titrations of guideline-directed medication therapy (GDMT) in an outpatient setting.
Methods: This pilot study aimed to investigate the impact of pharmacist-managed, outpatient heart failure management on patients' heart failure outcomes, and health-care-related costs. Retrospective chart review performed on patients referred to pharmacist practicing under collaborative practice agreement.
Background: Breakthrough resolutions in current biopolymer engineering rely on reliable diagnostics of atomic-deficient spaces over the finest sub-nanometer length scales. One such diagnostic is positron annihilation lifetime spectroscopy, which probes space-time continuum relationships for the interaction between electrons and their antiparticle (positrons) in structural entities like free-volume defects, vacancies, vacancy-like clusters, interfacial voids and pores, etc.
Objectives: This paper is intended to highlight the possibilities of positron annihilation lifetime spectroscopy as an informative instrumentation tool to parameterize free-volume evolution in light-cured dimethacrylate dental restorative composites exemplified by Charisma® (Heraeus Kulzer GmbH, Hanau, Germany) and Dipol® (Oksomat-AN Ltd, Kyiv, Ukraine).
Beta-blockers such as metoprolol, carvedilol, and bisoprolol are indicated for the treatment of patients with reduced ejection fraction heart failure. Heart failure treatment guidelines call for titration of these medications to specific target doses for morbidity and mortality benefit. Hepatic enzymes are responsible for metabolizing these medications; however, these enzymes are subject to genetic variations (polymorphisms) that can increase or decrease enzyme activity.
View Article and Find Full Text PDFMicrostructure hierarchical model considering the free-volume elements at the level of interacting crystallites (non-spherical approximation) and the agglomerates of these crystallites (spherical approximation) was developed to describe free-volume evolution in mechanochemically milled AsS/ZnS composites employing positron annihilation spectroscopy in a lifetime measuring mode. Positron lifetime spectra were reconstructed from unconstrained three-term decomposition procedure and further subjected to parameterization using x3-x2-coupling decomposition algorithm. Intrinsic inhomogeneities due to coarse-grained AsS and fine-grained ZnS nanoparticles were adequately described in terms of substitution trapping in positron and positronium (Ps) (bound positron-electron) states due to interfacial triple junctions between contacting particles and own free-volume defects in boundary compounds.
View Article and Find Full Text PDFNanoscale Res Lett
December 2016
Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix.
View Article and Find Full Text PDFStructural transformations caused by coarse-grained powdering and fine-grained mechanochemical milling in a dry mode were probed in high-temperature modification of tetra-arsenic tetra-sulfide known as β-As4S4. In respect to X-ray diffraction analysis, the characteristic sizes of β-As4S4 crystallites in these coarse- and fine-grained powdered pellets were 90 and 40 nm, respectively. Positron annihilation lifetime spectroscopy was employed to characterize transformations occurred in free-volume structure of these nanoarsenicals.
View Article and Find Full Text PDFMethodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media.
View Article and Find Full Text PDF'Cold' crystallization in 80GeSe2-20Ga2Se3 chalcogenide glass nanostructurized due to thermal annealing at 380°C for 10, 25, 50, 80, and 100 h are probed with X-ray diffraction, atomic force, and scanning electron microscopy, as well as positron annihilation spectroscopy performed in positron annihilation lifetime and Doppler broadening of annihilation line modes. It is shown that changes in defect-related component in the fit of experimental positron lifetime spectra for nanocrystallized glasses testify in favor of structural fragmentation of larger free-volume entities into smaller ones. Nanocrystallites of Ga2Se3 and/or GeGa4Se8 phases and prevalent GeSe2 phase extracted mainly at the surface of thermally treated samples with preceding nucleation and void agglomeration in the initial stage of annealing are characteristic features of cold crystallization.
View Article and Find Full Text PDF