Publications by authors named "Adam Hurlstone"

HER2 and αβ integrin are independent predictors of breast cancer survival and metastasis. We identify an αβ/HER2 cross-talk mechanism driving invasion, which is dysregulated in drug-resistant HER2+ breast cancer cells. Proteomic analyses reveal ligand-bound αβ recruits HER2 and a trafficking subnetwork, comprising guanosine triphosphatases RAB5 and RAB7A and the Rab regulator guanine nucleotide dissociation inhibitor 2 (GDI2).

View Article and Find Full Text PDF

Resistance mechanisms to immune checkpoint blockade therapy (ICBT) limit its response duration and magnitude. Paradoxically, Interferon γ (IFNγ), a key cytokine for cellular immunity, can promote ICBT resistance. Using syngeneic mouse tumour models, we confirm that chronic IFNγ exposure confers resistance to immunotherapy targeting PD-1 (α-PD-1) in immunocompetent female mice.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer deaths. Its high mortality is associated with high metastatic potential. Here, we show that the RAC1-selective guanine nucleotide exchange factor T cell invasion and metastasis-inducing protein 1 (TIAM1) promotes cell migration and invasion in the most common subtype of lung cancer, non-small-cell lung cancer (NSCLC), through an unexpected nuclear function.

View Article and Find Full Text PDF

Treatment with immune checkpoint inhibitors, widely known as immune checkpoint blockade therapy (ICBT), is now the fourth pillar in cancer treatment, offering the chance of durable remission for patients with advanced disease. However, ICBT fails to induce objective responses in most cancer patients with still others progressing after an initial response. It is necessary, therefore, to elucidate the primary and acquired resistance mechanisms to ICBT to improve its efficacy.

View Article and Find Full Text PDF

Dysregulated cellular metabolism is a cancer hallmark for which few druggable oncoprotein targets have been identified. Increased fatty acid (FA) acquisition allows cancer cells to meet their heightened membrane biogenesis, bioenergy, and signaling needs. Excess FAs are toxic to non-transformed cells but surprisingly not to cancer cells.

View Article and Find Full Text PDF

Respirometry, based on oxygen uptake, is commonly employed for measuring metabolic rate. There is a growing need for metabolic rate measurements suitable for developmental studies, particularly in , where many important developmental stages occur at < 4 mm. However, respirometry becomes more challenging as the size of the organism reduces.

View Article and Find Full Text PDF

The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity.

View Article and Find Full Text PDF

Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns.

View Article and Find Full Text PDF

Hyper-activation of RAS signaling pathways causes cancer, including melanoma, and RAS signaling pathways have been successfully targeted using drugs for patient benefit. The available drugs alone cannot cure cancer, however, and so investigation continues into RAS signaling pathways, with the goal of identifying further actionable targets. The zebrafish can be used to model human malignancies, and genetic modification of zebrafish to incorporate selective disease-associated genetic alterations is practicable.

View Article and Find Full Text PDF

Mucosal surfaces such as fish gills interface between the organism and the external environment and as such are major sites of foreign Ag encounter. In the gills, the balance between inflammatory responses to waterborne pathogens and regulatory responses toward commensal microbes is critical for effective barrier function and overall fish health. In mammals, IL-4 and IL-13 in concert with IL-10 are essential for balancing immune responses to pathogens and suppressing inflammation.

View Article and Find Full Text PDF

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide, with overall survival of less than 50%. Current therapeutic strategies involving a combination of surgery, radiation, and/or chemotherapy are associated with debilitating side effects, highlighting the need for more specific and efficacious therapies. Inhibitors of BCL-2 family proteins (BH3 mimetics) are under investigation or in clinical practice for several hematological malignancies and show promise in solid tumors.

View Article and Find Full Text PDF

Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis.

View Article and Find Full Text PDF

Migrating cells have to cross many physical barriers and confined in 3D environments. The surrounding environment promotes mechano- and biological signals that orchestrate cellular changes, such as cytoskeletal and adhesion rearrangements and proteolytic digestion. Recent studies provide new insights into how the nucleus must alter its shape, localization and mechanical properties in order to promote nuclear deformability, chromatin compaction and gene reprogramming.

View Article and Find Full Text PDF

Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation.

View Article and Find Full Text PDF

RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation.

View Article and Find Full Text PDF

Cell migration through extracellular matrices requires nuclear deformation, which depends on nuclear stiffness. In turn, chromatin structure contributes to nuclear stiffness, but the mechanosensing pathways regulating chromatin during cell migration remain unclear. Here, we demonstrate that WD repeat domain 5 (WDR5), an essential component of H3K4 methyltransferase complexes, regulates cell polarity, nuclear deformability, and migration of lymphocytes in vitro and in vivo, independent of transcriptional activity, suggesting nongenomic functions for WDR5.

View Article and Find Full Text PDF
Article Synopsis
  • MAPK pathway inhibitors show promise in treating advanced melanoma, but patients often develop resistance that limits complete recovery.
  • Tumor-associated macrophages and fibroblasts form inflammatory niches that promote drug tolerance through specific cytokine signaling, particularly involving IL-1β and CXCR2 ligands.
  • Targeting these inflammatory responses can enhance the effectiveness of MAPK inhibitors, suggesting that early intervention against these adaptive mechanisms may improve treatment outcomes for melanoma patients.
View Article and Find Full Text PDF

Aberrant WNT signaling drives colorectal cancer (CRC). Here, we identify TIAM1 as a critical antagonist of CRC progression through inhibiting TAZ and YAP, effectors of WNT signaling. We demonstrate that TIAM1 shuttles between the cytoplasm and nucleus antagonizing TAZ/YAP by distinct mechanisms in the two compartments.

View Article and Find Full Text PDF

Phenotype-guided re-profiling of approved drug molecules presents an accelerated route to developing anticancer therapeutics by bypassing the target-identification bottleneck of target-based approaches and by sampling drugs already in the clinic. Further, combinations incorporating targeted therapies can be screened for both efficacy and toxicity. Previously we have developed an oncogenic-RAS-driven zebrafish melanoma model that we now describe display melanocyte hyperplasia while still embryos.

View Article and Find Full Text PDF

Mutations affecting Gαq proteins are pervasive in uveal melanoma (UM), suggesting they 'drive' UM pathogenesis. The ERK1/2-MAPK pathway is critical for cutaneous melanoma development and consequently an important therapeutic target. Defining the contribution of ERK1/2-MAPK signalling to UM development has been hampered by the lack of an informative animal model that spontaneously develops UM.

View Article and Find Full Text PDF

CD4 T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4 T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4 cells allowing us to scrutinize the development and specialization of teleost CD4 leukocytes in vivo.

View Article and Find Full Text PDF

Understanding how immune cells such as macrophages interact with cancer cells is of increasing interest, as cancer treatments move towards combining both targeted- and immuno- therapies in new treatment regimes. This protocol is using THP-1 cells, a human leukemia monocytic cell line that can be differentiated into macrophages. This allows studying the effects of the macrophage secretome on cancer cells (on growth, drug response or gene expression) in co-cultures without direct cell contact interactions.

View Article and Find Full Text PDF

Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM.

View Article and Find Full Text PDF