Publications by authors named "Adam Hunniford"

Ion implantation experiments were carried out on amorphous (30 K) and crystalline (80 K) solid CO2 using both reactive (D(+), H(+)) and non-reactive (He(+)) ions, simulating different irradiation environments on satellite and dust grain surfaces. Such ion irradiation synthesized several new species in the ice including ozone (O3), carbon trioxide (CO3), and carbon monoxide (CO) the main dissociation product of carbon dioxide. The yield of these products was found to be strongly dependent upon the ion used for irradiation and the sample temperature.

View Article and Find Full Text PDF

Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots.

View Article and Find Full Text PDF

An experimental system, based upon UV and IR laser desorption, has been constructed to enable the production and characterization of neutral biomolecular targets. These targets are to be used for interaction experiments investigating radiation-induced damage to DNA. The viability of the laser-desorption techniques of MALDI (matrix-assisted laser-desorption ionization), SALDI (surface-assisted laser-desorption ionization) and DIOS (desorption/ionization on silicon), for production of these gas targets is discussed in the present paper.

View Article and Find Full Text PDF

Ion-beam irradiation provides a promising treatment for some types of cancer. This promise is due mainly to the selective deposition of energy into a relatively small volume (the Bragg peak), thus reducing damage to healthy tissue. Recent observations that electrons with energies below the ionization potential of DNA can cause covalent damage to the bases and backbone have led to investigations into the ability of low-energy (<1 keV x Da(-1)) ion beams to damage double-stranded DNA.

View Article and Find Full Text PDF

In this paper we report the results of the first experimental study of the irradiation of low temperature water ice (30 and 90 K) using low energy (4 keV) 13C+ and 13C2+ ions. 13CO(2) and H2O(2) were readily formed within the H2O ice with the product yield and growth rate observed to be highly dependent on both the sample temperature and ion charge state.

View Article and Find Full Text PDF